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A First Step Toward a Family of
Morphed Human Body Models
Enabling Prediction of
Population Injury Outcomes
The injury risk in a vehicle crash can depend on occupant specific factors. Virtual crash
testing using finite element human body models (HBMs) to represent occupant variability
can enable the development of vehicles with improved safety for all occupants. In this study,
it was investigated how many HBMs of different sizes that are needed to represent a
population crash outcome through a metamodel. Rib fracture risk was used as an example
occupant injury outcome.MorphedHBMs representing variability in sex, height, andweight
within defined population ranges were used to calculate population variability in rib
fracture risk in a frontal and a side crash. Two regression methods, regularized linear
regression with second-order terms and Gaussian process regression (GPR), were used to
metamodel rib fracture risk due to occupant variability. By studying metamodel predictive
performance as a function of training data, it was found that constructing GPR metamodels
using 25 individuals of each sex appears sufficient to model the population rib fracture risk
outcome in a general crash scenario. Further, by utilizing the known outcomes in the two
crashes, an optimization method selected individuals representative for population
outcomes across both crash scenarios. The optimization results showed that 5–7 individuals
of each sex were sufficient to create predictive GPR metamodels. The optimization method
can be extended for more crashes and vehicles, which can be used to identify a family of
HBMs that are generally representative of population injury outcomes in future work.
[DOI: 10.1115/1.4064033]

Introduction

Vehicle occupant epidemiology indicates greater fatality and
injury risks for female, obese, and elderly occupants [1–5]. While it
has been indicated that the increased risk of several injuries for
females is due to differences in crash and vehicle types [6], better
understanding of the effect of occupant variability in the design of
safety systems can enable development of protection systems that
further reduce the number of occupant fatalities and injuries.
Vehicle occupant injury risk has traditionally been evaluated

using anthropomorphic test devices (ATDs) in physical crash tests
and virtual simulations of crash tests. Crash test simulations are
common during the vehicle development phase as it reduces the
need for physical prototypes and speeds up the development process.
Physical crash testing is mandated in regulations and applied by
consumer information organizations, such as new car assessment
programs, providing publicly available safety ratings of vehicles.
The population of adult vehicle occupants in crash testing is

represented by three standard ATD sizes, representing a fifth
percentile female, a 50th and a 95th percentile male. These
percentiles refer to male and female height and weight distributions

of the 1970s U.S. population [7]. ATDs are mechanical representa-
tions of humans and use sensor measurements to estimate body
region injury risks.
To provide more detailed insights into underlying injury

mechanisms, finite element human body models (HBMs) are used
as complements to ATDs in crash simulations. Detailed HBMs used
for occupant safety simulation, such as the total human model for
safety (THUMS) [8], GHBMC [9], and SAFERHBM (SHBM) [10]
represent the human anatomy at a higher level of detail than the
ATDs. For instance, in the HBMs all ribs in the ribcage are modeled
in detail while in theATDs the ribcage is representedwith a few ribs.
Therefore, the HBMs have the potential to evaluate injury at the
tissue level by predicting local physical measurements such as
stress, strain, and pressure, that are related to the actual physical
injury mechanism. As an example, SHBM (v.9) was validated for
predicting strain in the rib cortical bone and a strain-based rib
fracture risk [11,12]. Following the ATD size convention, the
THUMS and GHBMC models exists in three versions representing
individuals of the same height andweight as the standardATD sizes,
while the SHBM is only available in one size, representing a 50th
percentile male. To enable representation of a variation of
anthropometries with HBMs, mesh morphing methods, that modify
the geometry described by the HBM finite element mesh, have seen
increased use in recent years and have been implemented in
frameworks such as PIPER [13] and parametric HBM morphing
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[14,15]. Studies including validation of morphed HBMs (MHBMs)
have demonstrated a potential to represent anthropometric occupant
variability in impact conditions [16–18].
Considering the statistics of injury risk differences across the

population and the potential in using HBMs to represent occupant
variability, the consumer information organization Euro NCAP has
communicated their intention to include virtual crash testing with
HBMs to represent occupant diversity in vehicle safety evaluations
[19]. However, howmanyHBMs, and ofwhich anthropometries has
not yet been specified. A potential approach, investigated in this
study, can be to select a number of anthropometries which are
representative of population injury risk outcomes due to the
variability existing in the general population. In this approach, a
prerequisite is knowledge of the injury outcome across the
population.
As crash simulations with detailed finite element HBMs are

computationally expensive (hours to days of multicore calculations
per simulation depending on the specific scenario and computing
resources), evaluating the crash outcome for a population of
occupants through direct computation can become prohibitively
time consuming. To aid in analysis, metamodeling based on
computer simulation results (also referred to as response surface
methodology, surrogate modeling, emulators) has been proposed as
a viable methodology for crash simulations with MHBMs [20–22].
In this context, a metamodel is a mathematical model constructed to
reproduce some input–output relationship of the crash simulations
but is substantially faster to evaluate than the crash simulations it is
built upon. Constructing a metamodel requires parametrization of
the crash simulation model to create input parameters that modify
the details of the simulation, running a set of simulations at different
combinations of inputs (i.e., input points) to generate known
input–output relationships (training data), and selecting and fitting a
metamodel to the training data.
As an example, Ref. [20] used 61 combinations of six parameters

to generate training data for driver injury risks in frontal impacts.
The driver sled model represented a driver environment and was
equipped with a steering wheel airbag and a seatbelt. Parameters
described variation in impact speed, seatbelt load limit force, seat
position, seat back angle, and height and body mass index (BMI) of
the occupant. Height and BMI variations were achieved by
morphing the 50th percentile male THUMS. Second-order polyno-
mial regressions were used as metamodels for different MBHM
injurymetrics, as they had the lowest error for predicting the training
data (training error) compared to other evaluated functional forms
[20].
However, the training error can be optimistic in measuring the

performance of ametamodel for two reasons. First, themetamodel is
often constructed through algorithms minimizing the training error,
and perfectly fitting the training data is achievable for flexible
models. But the purpose of a metamodel is to predict the output of
the crash simulation in new points. The error for prediction in new
points, not part of the training data (test error), is a more appropriate
metric for judgingmetamodel quality [23]. Second, crash simulation
outputs contain numerical noise. While they are deterministic—
running the same crash simulation twice on the same computer will
produce the same results [24]—small changes in input parameters
can spuriously lead to unexpectedly large changes in output, due to
finite precision numerical calculations. In the presence of noise, it is
possible to construct metamodels predicting the noise, rather than
underlying systematic trends in the output [25]. This leads tomodels
with small training errors that does not predict the response well in
new input points (large test errors), which is a phenomenon known
as overfitting.
To estimate the test error, a portion of the data can be held out

before generating the metamodel, at the cost of a reduced training
set. A technique to enable use of all data in the metamodel
construction, while obtaining an estimate of the test error is k-fold
cross-validation (CV), where the training data are divided into k
groups. One of the k groups is taken as the test data, and the
metamodel is constructed using the remaining k � 1 groups, and a

test error is calculated for the held-out set. This is repeated k times,
such that all groups have been used as a test set, and the CV test error
estimate is the average over the k iterations [23].
Reference [21] used the ten-fold CV error to compare different

regression methods as metamodels for a combined MHBM injury
metric in a frontal impact scenario. Special attentionwas given to the
effect of tuning metamodel hyperparameters (i.e., parameters
affecting the metamodeling method itself) on the CV error. A
male GHBMC model representing either a 50th percentile male, or
as morphed to an obese male represented variation in BMI. Fifteen
additional parameters represented various safety system config-
urations. Evaluatedmethods included linear regressionwith second-
order polynomial terms with and without regularization, regression
forests, support vector regression, and neural network regression.
Among these methods, the linear regression with second-order
terms regularized with least absolute shrinkage and selection
operator (LASSO) [26] had the lowest CV error over a fixed set of
450 training points.
A drawback with using a fixed training set size for metamodel

construction is that it is not known if the train and test errors have
converged, or if additional training points could substantially
improve metamodel fit. Due to the inherent numerical noise in crash
simulation outputs, which can have different magnitudes for
different crash scenarios, depending on the specificmodels involved
and computational settings [24], there exists no general error
thresholds for an acceptable metamodel fit. For constructing
metamodels of lateral head excursion and rib fracture risk from a
morphed 50th percentile male GHBMC, Ref. [22] used a batch-
sequential approach to metamodel construction. The crash simu-
lation included variation in height, weight, and waist circumference
of the MHBM, and variation in seatbelt load limiting force and
impact configuration of the vehicle. The neural network regression
based metamodels predicted the outputs in 45 new test points. The
outputs were then obtained in these points, enabling calculation of
test errors for the metamodels constructed from the previous
batches. The sequential calculation of metamodel errors allows to
study if metamodel error magnitudes converge for some training set
size, which can be used in the judgment if sufficient training data
have been generated.
In the broader context of metamodeling based on computer

simulation output, Gaussian process regression (GPR), also known
as kriging, has been widely used [27,28]. Previous applications
include biomechanical finite element simulations [29,30] and HBM
simulations [31,32]. Its applicability for metamodeling of MHBM
outputs has not yet been evaluated, but it appears promising as it is a
nonparametric method (i.e., it does not assume a functional form for
the output) with relatively few hyperparameters that have likelihood
formulations, which simplifies the model fitting process.
While metamodeling has been demonstrated as a viable approach

to enable prediction of crash outcomes for MHBMs representing
anthropometric variability, onlymale anthropometric variability has
been explored. Further, as a general limitation,metamodels can only
make predictions involving the parameters existing in the training
data. In a vehicle development phase, where new prototype designs
are invented based on evaluation outcomes of current designs,
metamodeling has limited utility as unknown future features cannot
be included in the parametrization. In this context, knowledge of a
limited number of HBM anthropometries that can be used to
efficiently generate a metamodel representative of population
variability in crash outcomes enables more rapid evaluations.
Therefore, the aim of this study was to investigate howmany, and

which, MHBM anthropometries that are needed to represent a
population crash outcome. As an example outcome, occupant rib
fracture risk was used in this study, as rib fractures remain a
prevalent occupant injury in real-world crashes [5] that crash testing
with ATDs have limited capability to predict [33–35]. Thus, virtual
evaluation of rib fracture risk with MHBMs has the potential to
enable development of protection systems that contribute to rib
fracture injury risk reduction for the population of vehicle
occupants.
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Methods

Themethods are divided into threemain steps. A brief overview is
given here, while detailed methods are provided in the below
methods subsections.
First, metamodel training data representing rib fracture risk

outcomes in front and near-side impacts for a population were
generated. The populationwas defined to include 90%of U.S.males
and females, in terms of height and weight ranges. Male and female
samples were selected, and for each sample, a corresponding
MHBM was created by morphing the SHBM to the corresponding
sex, height, and weight. For each MHBM, the risk to sustain two or
more fractured ribs (NFR2þ) was computed in two different crash
scenarios, representing a frontal impact and a side impact using
generic occupant compartment models.
Second, using the frontal and side impact NFR2þ results, two

different regression methods were evaluated for their capability of
metamodeling the population NFR2þ risk in each impact scenario,
by studying convergence of each metamodel training and test errors
for increasing training set sizes. Here, training error refers to the
error betweenmetamodel prediction of NFR2þ and the correspond-
ing MHBMNFR2þ outputs in the training data. Test error refers to
the errors between metamodel NFR2þ predictions and correspond-
ing MHBM NFR2þ outputs in a held-out test set. Metamodels for
both sexes combined, as well as separate models for each sex were
evaluated. The metamodeling technique that had the overall lowest
errors for predicting NFR2þ in the held-out test set was selected for
the next step.
Third, with the selected metamodeling technique, it was

investigated how many, and which, MHBMs within the training
sample that should be used to represent the population NFR2þ. In
this context, to represent the population meant that the metamodel
constructed using only the training data represented by these
MHBMs, had the lowest error for prediction of NFR2þ across the
entire population, averaged over both impact scenarios.

Generating the Population Rib Fracture Risk Training
Data. The population to be represented by theMHBMswas defined
to include 90% of adult males and females in the U.S., in terms of
height and weight, based on the 2013–2016 National Health and
Nutrition Examination Survey (NHANES) data, Fig. 1. Height and
weight ranges were defined by 90% probability regions, calculated
using the NHANES weighting factors [36]. Briefly, a 90%
confidence region of a bivariate normal distribution constructed

using the correlation between height and weight, centered at the
mean height and weight, was computed for each sex using a custom
MATLAB script (R2017b, TheMathWorks, Inc., Natick, MA). The
logarithm of weight was used due to right-skewed weight
distributions [36]. The three standard ATD sizes are included in
Fig. 1 for reference.
A sequential space filling strategy with room for 500 samples of

height andweight within each sex was used to sampleMHBM sizes,
as it was unknown how many samples were needed for converged
NFR2þ metamodel test errors. As the sample regions were
elliptical, the starting point was an existing space-filling design of
500 points within a two-dimensional unit disk [37]. Here, the two-
dimensional coordinateswithin the disk corresponded to normalized
height and log(weight). These 500 sampleswere then subsampled by
a sequential strategy that started from the sample closest to the disk
center, and then sequentially chose the next sample as the one
furthest away from the already selected samples. The samples were
then mapped to the corresponding region defined for each sex in
Fig. 1. This enabled a sequence of height and weight samples that,
for every sample size, were spread out within the regions for each
sex. Based on previous MHBM metamodeling studies [21,22], an
initial sample size of 400MHBMs (200male, 200 female) was used,
and the sequential sampling strategy allowed to sequentially add
additional samples, up to 300 more of each sex.

Morphing to Generate Morphed Human Body Models. The
SHBM (v.10) [10] was the baseline HBM used for morphing. The
parametric HBM morphing method [15] was used for morphing of
the SHBM to the sex, height, and weight targets selected in the
sampling. This morphing method uses statistical human shape
models of body surface, ribcage, pelvis, femur, and tibia, all
parametrizedwith respect to sex, age, height, andweight, to describe
the target geometry for the corresponding HBM parts. The use of
human shape statistical models ensured that the resulting MHBM
geometries represented human shape trends with respect to sex,
height, and weight, both in external body shape and for skeletal
structures. The age parameter was fixed at 45 years for all MHBMs
in this study. As sex does not influence rib cortical bone material
properties [38],male and femaleMHBMs used the same ribmaterial
properties. Similarly, the rib cortical bone thickness was not
adjusted for sex, asmale and female thicknesses are not significantly

Fig. 1 Height and weight ranges including 90% of U.S. males
(blue) and females based on the 2013–2016 NHANES. Height and
weight specifications of fifth percentile female, 50th, and 95th
percentile male ATDs [7] indicated for comparison. (Color version
online.)

Fig. 2 Examples of frontal and near-side crash simulation with
MHBMs. Top row: frontal impact at 108ms. Left: female 165 cm,
58 kg.Right:male181 cm,130 kg.Bottomrow:near-side impactat
54ms,parts hidden for visibility. Left: female162 cm, 74kg.Right:
male 188cm, 79 kg.
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different below 55 years of age [39]. Morphed versions of SHBM
(v.9) were previously validated using postmortem human subject
tests [18] and updated validation results ofmorphed SHBM(v.10) in
frontal and side impacts are presented in (See Supplemental
Materials on the ASME Digital Collection, Appendix A).

Occupant Crash Simulations for NFR21Risk. A frontal and a
near-side lateral impact crash simulation were carried out with each
MHBM seated as a front row passenger in generic vehicle interior
models (Fig. 2). The interior models were based on the models used
by Pipkorn et al. [12] and Iraeus and Lindquist [40]. Descriptions of
the interior model updates and validations are provided in (See
Supplemental Materials, Appendix B).
Assuming a 220mm seat track length, the seat was located

170mm rearward of the frontmost position along the seat track,
corresponding to the average of real-world front row passenger
seat locations [41]. MHBM hip (H-point) location relative to the
seat was adjusted according to sex, height, and weight [42].
The seatbelt model was routed along the shortest path using the
belt fitting algorithm in the Primer preprocessor (v.17.0, Oasys
Ltd., London, UK). For the frontal impact, the delta-velocity
was 48 km/h, and the seat belt retractor load limiting force was 4 kN.
For the near-side impact, the lateral delta-velocity was 24 km/h
and peak intrusion of the B-pillar was 184mm. In both impacts, the
crash conditions were selected such that a male MHBM corre-
sponding to the 50th male ATD height and weight predicted 50%
NFR2þ risk.
The NFR2þ risk from each MHBM in each crash was calculated

using a probabilistic age- and strain-based rib fracture risk method
[43,44]. Briefly, the maximum value of first principal strain
throughout the crash simulation was extracted from each rib cortical
bone mesh, resulting in 24 strain values (one from each rib). Next, a
fracture riskwas calculated for each rib using a strain-based and age-
adjusted risk function [44]. Finally, NFR2þ throughout the ribcage
was calculated using a generalized binomial model and the 24
fracture risks from each rib [43]. Using the probabilistic method, rib
fracture risk was calculated in a postprocessing step, after the crash
simulations had concluded. Thus, fracturing of the ribs was not
explicitly modeled (by, e.g., element deletion) in the MHBMs. Age
was fixed at 45 years also in the risk calculations. All simulations
were performed using LS-Dyna (16 cores, v.9.3.1 mpp, Livermore
Software Technology, Livermore, CA).
The animation output of each simulation was inspected for signs

of errors, such as contact intersections or numerical instabilities
(shooting nodes). All NFR2þ results were carefully inspected, and
if anyNFR2þ result deviated from the result obtained fromMHBMs
of similar height andweight and sex, all rib strain time histories used
in the NFR2þ calculation were carefully examined to rule out
numerical issues.

Population Metamodeling. The metamodeling of NFR2þ out-
puts as a function of sampled input parameters is a regression
problem. In a regression problem, n pairs of inputs and output
xi, yið Þ are known (training data), where yi is the known output from
the corresponding input vector (bold notation) xi ¼ xi1, xi2,…, xij½ �,
representing the ith choice of j input parameters. Here, NFR2þwas
the output and sex, height, and weight were the input parameters. A
solution to the regression problem is an estimated regression

function, f̂ , based on the training data, capable of predicting new

output values ŷ ¼ f̂ xð Þ given new input data x. The root-mean-
square error (RMSE), Eq. (1), was used to measure overall
metamodel fit to training data, test data, and across the population
sample.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

yi � ŷið Þ2

n

vuuut
(1)

As a complementarymeasure of fit,R2 was used, see Eq. (2), where �y
is the mean of the output sample. R2 measures the proportion of

variance in the output that is explained by amodel. R2 ¼ 1 indicates
that all output variance is explained by the model. A model
predicting �y in all points will have R2 ¼ 0, while models with worse
predictions can obtain R2 < 0:

R2 ¼ 1�

Xn
i¼1

yi � ŷið Þ2

Xn
i¼1

yi � �yð Þ2
(2)

Comparison of Regression Models. Both LASSO regularized
linear regressionwith second-order polynomial terms (LASSO) [26]
and Gaussian process regression with separable Gaussian kernel
(GPR) (see, e.g., Ref. [28]) were used to create metamodels for
NFR2þ risk in both impacts. All metamodeling was performed
using R v.4.2.2 [45], including packages “glmnet” v.1.0 [46] and
“laGP” v.1.5-8 [47]. Test and training set splits were done using the
“caret” package v.6.0-93 [48]. All inputs were normalized to unit
range before training. For hyperparameter tuning, 100 LASSO
regularization factors ranging from 0.0001 to 1 were evaluated, and
the one resulting in the smallest five-fold CV RMSE for the training
data were selected. The range and number of LASSO regularization
factor levels were determined after initial evaluations. GPR
hyperparameters included a kernel length scale for each input
parameter and a nugget (corresponding to noise not explained by
inputs) and were computed through simultaneous likelihood
optimization based on the training data, thus avoiding the need for
user inputs to the fitting [28,47].
Train and test RMSE were calculated for training data subsets of

increasing sizes to study the evolution of LASSO and GPR
metamodel fits to NFR2þ outcomes as functions of training set
size. All available data were split into a test and a training set. The
test set size was 25% of all data and was only used to calculate test
error. Each metamodel was fitted 50 times for randomly sampled
(without replacement) subsets of the training data. Thiswas repeated
for increasing training subset sizes, until the full (75%) training set
was used in the training. Average and standard deviation train and
test RMSE were plotted against training set size. The results were
used to determine if sufficient training data to represent population
outcomes ofNFR2þ had been created and to judgewhich of LASSO
and GPR was more accurate for metamodeling of population
NFR2þ.
Frontal and near-side impact NFR2þ metamodels were created

for males, females, and for males and females combined.

Selecting Individuals Representative of Population NFR21
Risk. To identify sample designs of individuals representative of
the population NFR2þ, an optimization was performed. In this
optimization, those individuals that resulted in the overall best
metamodel prediction for the population (the total set of all MHBM
outputs in each crash) were selected. The optimization was repeated
for an increasing number of individuals, starting from three females
and three males. To avoid suboptimization for the specific NFR2þ
outcomes in a single accident scenario, the optimization target was
to minimize an averaged normalized RMSE (ANRMSE), Eqs. (3)
and (4), for metamodel NFR2þ predictions in both front and side
impact simultaneously

NRMSEi ¼ RMSEi, All

ymax
i � ymin

i

(3)

ANRMSE ¼ 0:5�NRMSEFront þ 0:5�NRMSESide (4)

where RMSEi, All was the metamodel RMSE calculated for all
available points in the population, and ymax

i and ymin
i were the largest

and smallest outputs among the currently evaluated candidate
training points. Normalization was performed as the range of
obtained NFR2þ outputs could be different in the two impacts.
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For every subpopulation size, a corresponding number of
individuals were selected, one metamodel for each impact was
constructed using the training data represented by those individ-
uals, and ANRMSE was calculated. The optimization objective
was then to select the individuals that minimize ANRMSE for the
population. Selecting the best k individuals from a total sample size
of n is known as an “n-choose-k” problem which tends to grow to
large numbers of possible candidate solutions. E.g., there are
19,900 ways to choose two out of 200, 1.3� 106 ways to choose
three, 65� 106 and 2.5� 109 ways to choose four and five,
respectively.
Therefore, minimization of ANRMSE was performed using

genetic algorithms (GAs). R package “GA” v.3.2.3 [49], with
population, mutation, and crossover functions tailored for
“genes” containing unique integer indices. Here, each index in
a gene corresponded to a specific sample of sex, height, and
weight in the MHBM training data. For every optimization, a
sequence of three GAs was used. This was done to obtain
random restarts and to tradeoff exploration and exploitation by
reducing mutation probability in each following GA. Each GA
was initially seeded with 1000 random candidate genes. The
termination criteria for each GA were 1200 iterations or 300
consecutive iterations without improving ANRMSE. The single
best candidate solution from the previously terminated GA was
kept in the initialization of the following GA. The GA
implementation was verified using brute-force searching to
identify the best possible solutions for choosing two and three
out of 200. For these subpopulation sizes, the GA implementa-
tion successfully identified the best solutions within the first few
iterations of the first GA in the sequence.
After the optimization, metamodels for frontal and side impact

NFR2þ were constructed using the individuals identified for each
subpopulation size, and RMSE and R2 for those metamodels were
calculated using all available samples, corresponding to RMSE and
R2 for the population. As reference for optimization performance,
the correspondingmeasureswere calculated frommetamodels using

the same number of individuals but selected by the sequential space
filling strategy instead.

Results

NFR2þ riskwas calculated for 200male and 200 femaleMHBMs
in both front and near-side impact (in total 800 simulations). All
simulations reached normal termination.
In the frontal impact NFR2þ ranged from 32% to 100% for the

males and from 1% to 100% for the females. In the side impact
NFR2þ ranged from 1% to 70% for males and from 0% to 54% for
females, Fig. 3.
To better visualize differences between male and female MHBM

NFR2þ results, the same NFR2þ results are additionally shown in
perspective plots, Fig. 4.
For females in frontal impact, NFR2þ tended to initially increase

with increasing weight, then decrease to lower values for the heavier
females. This weight-effect on NFR2þ was also influenced by
height. For males in frontal impact, NFR2þ also increased with
weight, in a height-modulated manner, but remained saturated at
100% for the heavier males, Fig. 3.
For the females with high weight and low resulting NFR2þ, the

seatbelt slipped up toward the neck resulting in less seatbelt loading
to the ribcage, Fig. 5. The seatbelt did not slip up toward the neck for
male MHBMs of higher weights. For males and females of similar
height and weight, frontal impact NFR2þ tended to be higher for
females, Figs. 3 and 5.
In the side impact, male NFR2þ changed mainly with weight,

initially increasing, and then decreasing with increasing weight
(Figs. 3 and 6). For most female height and weight combinations,
NFR2þ was low. In a limited region, approximately bounded by
160–175 cm in height and 70–100 kg in weight, NFR2þ was
influenced by height and weight. For females above 160 cm,
increasing weight resulted in an initially increasing NFR2þ, which
decreased again for weights above approximately 90 kg, Fig. 3. For
males and females of similar height and similar, lower, weights, the

Fig. 3 Contour plots of NFR21 versus height andweight. The color corresponds toNFR21 risk in percentage.
Dashedcurves indicatemale and femaleoverlappingheight andweight regions. Top row: females.Bottomrow:
males. Left column: frontal impact. Right column: near-side impact. (Color version online.)
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male NFR2þ was higher. For higher weights and similar heights,
female risk was higher, Fig. 4.

Comparison of Regression Models. The reduction in test set
error (error between metamodel prediction of NFR2þ and corre-
sponding test set MHBMNFR2þ outputs) for both LASSO and GPR
with increasing training set sizes was evaluated. Test error (RMSE)
decreased at a high ratewith increasing training set sizes up until about

50 (for both males and females) or 25 (single sex) random training
points, Fig. 7. Beyond 25 training points for each sex, the relative gain
in test error reductionwith increased training set sizeswas diminished.
The exception was GPR for female frontal impact NFR2þ, which
showed a steady reduction in test errors with increasing training set
sizes all the way up to maximum set size, Fig. 7.

Overall, separate models for each sex resulted in lower test set
RMSE and higher R2 for different training set sizes, Fig. 7 and

Fig. 4 Perspective plots of NFR21 versus height andweight. Color corresponds to sexwith pink for females and
blue for males. Left: frontal impact. Right: near-side impact. (Color version online.)

Fig. 5 MHBMs in frontal impact at 92ms (approx. timeofmaximumrib strains), parts hidden for visibility. Left to right:
female 154cm and 46kg, female 161cm and 116kg, female 170 cm and 82kg, male 171 cm and 82kg.

Fig. 6 MHBMs in near-side impact at 49ms (approx. time for maximum rib strains), parts hidden for visibility. Left to
right: male 176 cm and 127kg, male 190 cm and 101kg, male 159cm and 73kg, female 159cm and 74kg.
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Table 1. GPR showed smaller test set RMSE and higher R2 than
LASSO for most training set sizes.
Overall, GPR metamodel test set RMSE was judged to be

converged for 150 MHBMs of each sex, indicating that 200 males
and 200 females were a sufficient sample size of MHBMs for
representing population NFR2þ. The exception was females in
frontal impacts, but here GPR test set R2 was anyway as high as 0.99
for 150 training points, indicating little room for improvement by
adding more training samples.

Selecting Individuals to Represent Population NFR21 Risk.
Only GPR was used when identifying representative individuals
through minimizing ANRMSE, due to the overall lower test errors
for GPR compared with LASSO. The optimization was performed
for subpopulation sizes of 3–28 training points for each sex. It was
stopped due to diminished RMSE and R2 improvements, Fig. 8.
Height and weight of selected males and females for subpopulation
sizes up to ten are provided in (See Supplemental Materials on the
ASME Digital Collection, Appendix C).
For both impacts and sexes, GPR models based on optimized

training points obtained smaller errors and higher R2 than
corresponding GPR models trained using the space filling sequence
of samples, Fig. 8. Formodels built using the training points selected
by optimization, the most substantial reductions in RMSE and gains
in R2 for predicting the population outcome were seen up to about

5–7 points. For more than ten points, gain in RMSE was lower
(Fig. 8).
In Fig. 9, the samples selected by the ANRMSE optimization for

male and female subpopulation sizes of seven are shown, together
with the first seven sample coordinates from the sequential space
filling strategy. For this sample size, the optimization selectedmales
spread out across the lower half of theweight range. For females, the
selected individuals appear more evenly spread over the region.
The NFR2þ predictions fromGPRmetamodels based on outputs

from seven individuals of each sex that were selected in the
optimization, can be seen in Fig. 10. The population RMSE and R2

for thesemetamodel predictions are shown forN¼ 7 in Fig. 8.While
the metamodels constructed using seven selected training points
deviate locally from the population outputs, they predict the overall
trends in the crash simulation outputs.

Discussion

The aim of this study was to investigate how many, and which,
MHBM anthropometries that are needed to represent a population
injury outcome, here NFR2þ in front and side crashes. The
considered population included 90% of U.S. males and females in
terms of height and weight and NFR2þ across this population was
represented by metamodels trained on MHBM front and side crash
simulation results.

MainFindings. TheMHBMNFR2þ rib fracture risk, whichwas
50% for a 50th percentile male ATD-sized MHBM, varied
nonlinearly with respect to height and weight within each sex and
ranged between 1% and 100% in frontal impact and 0–70% in side
impact when male and female population height and weight
variability were represented in MHBM crash simulations, Fig. 3.
Targeting a 50%NFR2þ risk for a 50th percentile male ensured that
NFR2þ was sensitive to changes in sex, height, and weight as this
result was in the middle of the NFR2þ range. In both higher and
lower severity crashes, NFR2þ could be close to 100% or 0%,
respectively, for many more body sizes. Therefore, the obtained

Fig. 7 Average training (dashedcurves) and test (solidcurves)RMSEforGPRandLASSOpredictionsofMHBMNFR21outputs in
frontal (top row) and side (bottom row) impact. Shaded regions represent61 standard deviation. Left to right: models usingmale
and female data, only male data, and only female data.

Table 1 RMSE andR2 for predictingMBHMNFR21 results in the
25% test set, for models using the full (75%) training set

Frontal impact Side impact

LASSO GPR LASSO GPR

Inputs RMSE R2 RMSE R2 RMSE R2 RMSE R2

Male and female 18.9 0.62 6.1 0.98 13.2 0.62 6.8 0.94
Male 8.0 0.88 4.6 0.97 11.4 0.70 4.5 0.95
Female 13.2 0.87 5.1 0.99 9.2 0.47 5.7 0.89
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NFR2þ results represent somewhat of a worst-case scenario, in
terms of sensitivity to sex, height, and weight variations.
The effect of height and weight on NFR2þ results were different

for male and female MHBMs even for similar heights and weights,
Figs. 3 and 4. Thus, there was no additional benefits to metamodel
predictive accuracy (test errorRMSE), for either LASSOorGPR, by
combining the sexes in a single metamodel, Fig. 7. This implies that
femaleNFR2þ is not representative ofmaleNFR2þ, and evaluation
for both sexes is necessary for predicting the population NFR2þ.
In frontal impact, increasing weight was associated with

increasing MHBMNFR2þ, reaching saturation at 100% depending
on height. Increasing body mass increases the kinetic energy that
needs be absorbed by the safety systems and vehicle interior parts to
stop the relative motion of the occupant within the limited space of
the vehicle interior, resulting in greater loads to the torso. For female
MHBMs, NFR2þ initially increased, and then decreased with
increasing weight, due to the seatbelt slipping toward the armpit and
neck for females of higher weights. This applied loading to the neck,
and even though the NFR2þ risk decreased it does not indicate
improved safety for the occupant, but rather a failure of the shoulder
belt to restrain the thorax. This phenomenon was not observed
among the heavier males, indicating that this was due to female
specific body shape features. As an example, the presence of breasts
for the females influenced the initial position of the seatbelt.
TheMHBMNFR2þ predictions were less sensitive to height and

weight variations in the near-side impact than in the frontal impact.
While NFR2þ initially increased with weight for males of all
heights, and females above 160 cm, after adding additional weight it
decreased again. Increasing weight increases the inertia of the body,
resulting in larger side impact forces. However, it also increases the
soft tissue thickness, which appears to provide protection for the
ribs, ultimately resulting in a lower rib fracture risk for the MHBMs
of higher weights. If this is a MHBMmodeling artifact, or an effect
present for occupants in real-world crashes is not known. Increasing
BMI (kg/m2), which corresponds to increasing weight for a fixed
height, have both been identified to increase thoracic injury risk [4],
and to have a nonsignificant effect [50] in logistic regression models

of real-world near-side crash injury risk. It has been demonstrated
that BMI can have a nonlinear effect on real-world rib fracture
outcomes [51], which means that statistical models assuming linear
BMI effects for rib fracture and thoracic injury risk can under-
estimate the significance ofBMI as a predictor, which can contribute
to conflicting findings in accident data analysis. The results from the
current MHBM simulation study showed nonlinear effects on
NFR2þ by increasing weight for a fixed height, which can support
nonlinear modeling of height, weight, and BMI effects on risk in
epidemiological studies of vehicle crash injuries.
For the majority of training set sizes, GPRmodels obtained lower

train and test RMSE, indicating a better fit to the MHBM NFR2þ
outputs, compared to the LASSO models. Separate GPR-based
metamodels for each sex tended to converge to a test NFR2þRMSE
of about 5%-unitswhen using 150MHBMtraining examples of each
sex, with little improvement in test error for training set sizes beyond
100. The exception was the highly nonlinear female MHBM frontal
impact NFR2þ response, for which the GPRmetamodel test RMSE
showed continuous improvement with increasing training set sizes
and reached a test set R2¼ 0.99 for 150 training samples. Previous
studies metamodeling HBM rib fracture risk reported 8% average
test error [22] (three or more fractures), and test set R2¼ 0.78 [32]
(one or more fractures). The obtained differences between training
and test set RMSE for both LASSO and GPR confirmed that
metamodel training set errors can be overly optimistic for predictive
accuracy, especially for smaller training set sizes, Fig. 7. This
highlights the importance of estimating metamodel test error
through a test set or k-fold CV to estimate the predictive capabilities
of the metamodel.
Combining themale and femaleMHBMdata and including sex as

an input parameter for the metamodels did not improve the
capability of metamodels to predict NFR2þ, even though this
effectively doubled the training set size. This is in line with findings
in Ref. [32], in which metamodels did not improve when combining
training sets otherwise separated by factor inputs. In this study,
possible reasons are that the male and female height and weight
regions only partially overlap, Fig. 1, and that the MHBM NFR2þ

Fig. 8 GPR metamodels fitted using optimized training points and GPR metamodels fitted using the
sequenceof points from thesequential spacefillingdesign. Top row:RMSE for predictingMHBMNFR21
outputs. Bottom row: R2. Left column: frontal impact NFR21. Right column: near-side impact NFR21.
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result trends were different between males and females, also in the
overlapping region, Figs. 3 and 4. This ultimately reduced the benefit
of sex as an input in a combined model. That is, including female
MHBMNFR2þ trends due to height andweight did not improve the
model fit for male MHBM NFR2þ trends and vice versa.
For randomly selected training samples, the most substantial

reduction in test errors were seen for up to about 25 samples of each
sex, Fig. 7. For predicting the entire population output, the GPR
metamodels constructed using the sequential design of samples all
obtained R2> 0.8 for 13 samples, except for the GPR model of
female NFR2þ in the side impact, that reached an R2 of 0.70 for 26
samples, Fig. 8. The reason for the lowR2 values in this casewas that
female MHBM side impact NFR2þ was relatively low and
unaffected by height and weight in many cases, except for in a
small region where NFR2þ increased, Fig. 3. Therefore, meta-
models that did not have sufficient samples in this region
consistently predicted too low NFR2þ in this region.

Taking these results into account, there is an indication that future
metamodeling efforts of population NFR2þ, and other nonlinear
crash outcomes, in other vehicles or crash conditions, can expect
reasonably accurate GPR metamodel predictions of population
outcomes from a training set consisting of at least 25 males and
25 females, evenly spread across their respective height and weight
domains. This can be taken as a lower bound, general, answer to the
question of howmanyMHBMs are needed to represent a population
outcome in a given crash scenario. This recommendation is in
agreement with a general metamodeling rule-of-thumb of sampling
ten times the number of input dimensions [52–54].
Further reducing the number of MHBMs requires leveraging

known information, whichwas donewhen selectingwhichmale and
female individuals to be used to construct population representative
GPR metamodels through optimizing ANRMSE, Eq. (4), for the
entire population across both impacts. Here, it was found that
constructing metamodels using as few as five to seven MHBMs of
each sex could produce metamodels capable of representing the
overall trends in MHBM population NFR2þ in both crashes, due to
height and weight variations, Figs. 8 and 10. It is important to point
out that the selected individuals were selected to be representative of
the specific male or female NFR2þ outcomes, as only these two
crash outcomes were included in the optimization criteria
(ANRMSE, Eq. (4)).
That the resulting selection of individuals is related to these

specific results can be seen by comparing the location of the selected
individuals in Fig. 9, to the NFR2þ results in Fig. 3 as well as to the
resulting metamodel predictions for front and side NFR2þ in
Fig. 10. For the selected females, the height and weight sizes are
located such that the resulting metamodels both can capture the rise
and fall of female NFR2þ in the frontal impact as well as predict the
increase of NFR2þ in the limited region where height and weight
influenced femaleMHBMNFR2þ in the side impact. For themales,
no individuals in the higher end of theweight rangewere selected for
a subpopulation size of seven, Fig. 9. Therefore, metamodels
constructed from these selected males need to extrapolate beyond
their training data to predict NFR2þ in the higher weight range. For
these specific male MHBM NFR2þ results, the metamodel
extrapolated trends coincide with the MHBMNFR2þ result trends,
Fig. 10, which is why these metamodels performed well in terms of
the optimization objective. This means that if an additional male

Fig. 9 Male and female individuals identified as minimizing
ANRMSE for a population size of seven (circles), and the first
seven points from the sequential space filling design (dots)

Fig. 10 Perspective plots of GPR models obtained from seven individuals selected by optimization (orange
surfaces) together with corresponding crash simulation NFR21 outputs (wireframe). Top row: males. Bottom
row: females. Left column: frontal impact. Right column: side impact. (Color version online.)
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crash outcome was added to the optimization objective, where the
metamodel extrapolation for higher weights did not correspond to
the outcome, it is likely that a different set of individuals would be
selected. That is, the selection is not robust when based on only two
crash outcomes for each sex. To improve the robustness of the
selection, it is necessary to add additional crash outcomes to the
optimization objective (further discussed under limitations and
future work below).
While the metamodel errors and identified individuals are only

valid for the specific crash conditions and NFR2þ results in this
study, the optimization results serve as a proof-of-concept for a
method capable of selecting a given number of individuals that can
be used to create population representative metamodels for more
than one crash outcome. For the specific crash outcomes in this
study, GPRmodels constructed using the seven selected individuals
of each sex, shown in Fig. 9, Appendix C, all have R2> 0.80, which
is only marginally improved upon by increasing the number of
selected individuals, Fig. 8. This indicates a possibility to represent a
nonlinear crash outcome for the population of occupants, through
metamodels based on around five to ten individuals of each sex in
future work.

Methods. The parametric HBMmorphing method [15] was used
for creating the MHBMs. This method aligns the morphed HBM
parts to statistical human shape models of body surface, femur,
pelvis, tibia, and the ribcage, all parametrized with respect to sex,
age, height, and weight of the human subjects they are based upon.
Thus, the resulting MHBMs follow geometrical shape trends
existing in the population. The parametric ribcage model [55]
enforces sex differences in overall ribcage geometry, including rib
cross-sectional dimensions, for which females tend to have more
slender ribs [56] which can be influential for rib fracture risks
[57,58]. Further, the parametric body shapemodel represents overall
sex differences in body surface geometry [59], such as more
pronounced breasts and increased soft tissue volumes around the hip
and thighs for females. Thus, both the ribcagemodel and the external
body shape models have implications for how the MHBMs interact
with the seatbelt, airbags, and vehicle interior parts, which
contributes to the observed sex differences in MHBM NFR2þ,
even for male and female MHBMs of similar height and weight.
Therefore, it is important to include HBMs morphed to females in
population evaluations.
Least absolute shrinkage and selection operator with second-

order polynomial terms was used as it has been identified as
performing well in previous metamodeling with MHBMs [20,21].
Reference [20] did not use LASSO regularization, but added
regression terms in a stepwise manner, which can be seen as a
manual method of regularization. In this study, GPR obtained
lower test RMSE for predicting MHBM NFR2þ for most sample
sizes, and the relatively poor performance of LASSO can be
attributed to that all LASSO models were prespecified as second-
order polynomials, limiting the space of resulting metamodel
surface shapes to second-order surfaces. Increasing the polynomial
degree could potentially improve the LASSO test RMSEs for
NFR2þ.
A benefit of GPR, beyond its capability of generalizing well for

few training points in this study, is that it is a nonparametric method
(i.e., no functional form needs to be assumed), making it suitable for
metamodeling of MHBM outputs, even in cases where no prior
knowledge about the shape of the resulting output surface exists. An
additional feature ofGPR, however not utilized in this study, is that it
also generates a confidence interval about its predictions, which can
guide an analyst in selecting new points for improving the response
surface fit. This predictive uncertainty has also been utilized in the
design of sequential adaptive sampling strategies that can be used to
select training points with a high likelihood to improve the overall fit
of the metamodel, based on the information gained from previous
training data [28,60,61]. Based on the results in this work, GPR is a
suitable method to generate metamodels of population injury risk
from MHBM simulations results.

The optimization performed to identify representative individuals
was only possible to conduct because the population outcomes were
already known in 200 points for each sex and crash scenario. As the
optimization objective (ANRMSE, Eq. (4)) depends on the results
already obtained for each sex in both impact scenarios, the solutions
identified by this optimization are products of these specificMHBM
NFR2þ results. To decrease this bias, the average predictive
accuracy was used as optimization criteria, which means that the
identified subpopulationswill not be optimal for any one of the crash
outcomes. Nevertheless, for subpopulation sizes of 3–28, the
identified individuals performed better, in terms of metamodel
accuracy, than a sequential space-filling design, indicating that each
selected subpopulation is more representative for the two outcomes.
To identify individuals that are representative across more crash
scenarios and to make the selection of individuals more robust to
particularities in a single crash outcome, the optimization objective,
Eq. (4), can easily be expanded to include outputs from more crash
scenarios, provided that the population outcome is known.

Limitations and Future Work. There are several limitations
with this study. First, only two different impact scenarios were used
to obtain the NFR2þ results. The occupant compartments used for
each crash scenario represented average vehicle geometries. It is
therefore possible that the trends inMHBMNFR2þwith changes in
sex, height, and weight seen in each separate crash scenario can be
similar in other vehicles. However, to confirm if the current result
trends are general for all vehicles, it is necessary to redo the
investigation using several different vehicle interiors. As the
NFR2þ result trends were different in front and near-side impact,
it is also necessary to investigate the population outcome in several
different crash configurations and severities, before a definitive set
of individuals, generally representative of a population NFR2þ can
be confirmed. It is possible that a representative set of individuals
can be different in different crash scenarios, especially if small
subpopulations are sought. In futurework, to decrease the sensitivity
of which individuals are selected based on particularities of single
crash outcomes (i.e., to increase the robustness of the selected
individuals), the optimization to identify representative MHBMs
needs to be performed for an objective including population
outcomes in more vehicles and crash scenarios. To economically
obtain population outcomes in new crash scenarios, the individuals
identified as representative can be used as starting points in a study
design, and the application of a GPR with a sequential adaptive
sample selection method has the potential to enable an economical
search of the input space that identifies a population representative
metamodel. Alternatively, a space-filling design of 25 MHBMs of
each sex can be used.
Further, the influence of age variations in the population on

NFR2þ was not considered. Increasing age has been identified to
significantly and substantially increase occupant rib fracture and
thoracic injury risk in crashes [4,5]. The age effect can potentially be
even more influential for rib fracture risk than height, weight, and
sex [4], and needs consideration in a population perspective.
Potentially contributing factors for the age trend are, for example,
that rib cortical bone material properties such as Young’s modulus
and ultimate strain degrades and that rib cortical bone thickness is
reduced with increasing age [38,39,44]. However, the focus of this
studywas the influence of height, weight, and sex. It is likely that the
influence of the height and weight parameters is similar for
occupants of different ages, although the overall magnitude of rib
fracture risk will be different when different ages are modeled.
Including age effects in MHBMs can contribute to also identifying
ages of individuals representative for population NFR2þ in future
work.
Additionally, the population of real-world occupants will differ in

a multitude of dimensions beyond those described by statistical
shape trends related to height, weight, and sex. A certain height can
be reached by different proportions of leg and torso lengths, and
occupants of similar weight can have different proportions of fat and
muscle mass, influencing overall body shape and resulting position
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of the seatbelt, to name a few. Beyond individual body shape
variations, each occupant can select various seating postures and
placement of the seatbelt across the torso which alters initial crash
conditions and resulting outcomes [62]. Further investigation of
population variability in more dimensions may reveal important
aspects to consider when representing crash outcomes of a
population.
Finally, only NFR2þ was considered in this work. However,

designing occupant safety often requires balancing injury risks in
different body regions.As an example, in frontal impacts the seatbelt
load limiting force should be low to limit loading to the chest, but it
should also be high enough to limit forward excursion of the chest
and head, such that hard contacts with vehicle interior parts are
avoided. Therefore, additional body region risk outputs, such as
head injury risk, should also be added to the optimization objective
in future work, to enable selection of individuals that are
representative also for additional injury risk outputs.

Conclusions

Subpopulations representative for the overall population NFR2þ
outcomes in both a front and a side impact scenario were identified.
Seven selected individuals of each sex enabled constructing GPR
metamodels representing population NFR2þ outcomes in both
crashes.
The subpopulation selection was based on known outcomes. In

other vehicles and crash scenarios, where the outcome is unknown,
our results indicate that GPR metamodels based on 25 male and
25 females can represent the population outcome.
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[30] Noè, U., Lazarus, A., Gao, H., Davies, V., Macdonald, B., Mangion, K., Berry, C.,
Luo, X., and Husmeier, D., 2019, “Gaussian Process Emulation to Accelerate
Parameter Estimation in aMechanicalModel of the Left Ventricle: ACritical Step
Towards Clinical End-User Relevance,” J. R. Soc. Interface, 16(156),
p. 20190114.

[31] Nie, B., Xia, Y., Zhou, Q., Huang, J., Deng, B., and Neal, M., 2014, “A Response-
Surface-Based Tool for Vehicle Front-End Design for Pedestrian Impact
Protection Using Human Body Model,” IJVD, 66(4), pp. 347–362.

[32] Schneider, B., Kofler, D., D’Addetta, G. A., Freienstein, H., Wolkenstein, M., and
Klug, C., 2022, “Approach for Machine Learning Based Design of Experiments
for Occupant Simulation,” Front. Future Transp., 3, p. 913852.

[33] Kent, R., Patrie, J., and Benson, N., 2003, “The Hybrid III Dummy as a
Discriminator of Injurious and Non-Injurious Restraint Loading,” Annu. Proc./
Assoc. Adv. Automot. Med., 47, pp. 51–75.

[34] Brumbelow, M. L., 2020, “Can Front Crash Rating Programs Using Hybrid III
Predict Real-World Thoracic Injuries?,” Proceedings of the IRCOBI Conference,
Munich, Germany, pp. 679–692.

[35] Brumbelow, M. L., Jermakian, J. S., and Arbelaez, R. A., 2022, “Predicting Real-
World Thoracic Injury Using THOR and Hybrid III Crash Tests,” IRCOBI
Conference Proceedings, Porto, Portugal, Sept. 14–16, pp. 264–287.

Journal of Biomechanical Engineering MARCH 2024, Vol. 146 / 031008-11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/biom

echanical/article-pdf/146/3/031008/7235935/bio_146_03_031008.pdf by guest on 22 February 2024

http://dx.doi.org/10.2105/AJPH.2011.300275
http://dx.doi.org/10.1080/15389580701737645
https://scholars.duke.edu/publication/1554799
https://scholars.duke.edu/publication/1554799
http://dx.doi.org/10.1016/j.aap.2014.05.024
http://dx.doi.org/10.1080/15389588.2019.1630825
http://dx.doi.org/10.1080/15389588.2021.2004312
http://dx.doi.org/10.1080/15389588.2021.2004312
https://hdl.handle.net/2027.42/259
https://www-esv.nhtsa.dot.gov/Proceedings/21/09-0111.pdf
https://www.dynamore.de/de/download/papers/2012-internationale-ls-dyna-users-conference/documents/occupantsafety08-a.pdf
https://www.dynamore.de/de/download/papers/2012-internationale-ls-dyna-users-conference/documents/occupantsafety08-a.pdf
http://www.ircobi.org/wordpress/downloads/irc21/pdf-files/2152.pdf
https://www.semanticscholar.org/paper/Developmentand-Validation-of-a-Generic-Finite-to-Iraeus-Pipkorn/90529805210aa90d6c6021d85ffa0823b3259693
https://www.semanticscholar.org/paper/Developmentand-Validation-of-a-Generic-Finite-to-Iraeus-Pipkorn/90529805210aa90d6c6021d85ffa0823b3259693
https://research.chalmers.se/publication/517644/file/517644_Fulltext.pdf
http://dx.doi.org/10.1080/15389588.2017.1307971
http://dx.doi.org/10.4271/2016-22-0014
http://dx.doi.org/10.4271/2016-01-1491
http://dx.doi.org/10.1002/oby.21947
http://dx.doi.org/10.1016/j.jbiomech.2019.109444
http://dx.doi.org/10.1080/10255842.2021.2003790
http://dx.doi.org/10.1080/13588265.2022.2109709
http://dx.doi.org/10.1080/10255842.2020.1841754
http://dx.doi.org/10.1080/10255842.2020.1830380
http://dx.doi.org/10.1080/10255842.2020.1830380
http://www.ircobi.org/wordpress/downloads/irc21/pdf-files/2151.pdf
http://www.ircobi.org/wordpress/downloads/irc21/pdf-files/2151.pdf
https://trid.trb.org/view/1361363
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
www.jstor.org/stable/2245858
http://dx.doi.org/10.3389/fphys.2018.01002
http://dx.doi.org/10.3389/fphys.2018.01002
http://dx.doi.org/10.1098/rsif.2019.0114
http://dx.doi.org/10.1504/IJVD.2014.066069
http://dx.doi.org/10.3389/ffutr.2022.913852
https://pubmed.ncbi.nlm.nih.gov/12941214/
https://pubmed.ncbi.nlm.nih.gov/12941214/
http://www.ircobi.org/wordpress/downloads/irc20/pdf-files/79.pdf
https://wbldb.lievers.net/10301591.html
https://wbldb.lievers.net/10301591.html


[36] Brolin, E., H€ogberg, D., and Hanson, L., 2020, “Skewed Boundary Confidence
Ellipses for Anthropometric Data,” Proceedings of the 6th International Digital
Human Modeling Symposium, Sk€ovde, Sweden, Aug. 31–Sept. 2, pp. 18–26.

[37] Specht, E., 2021, “The Best Known Packings of Equal Circles in a Circle
(Complete up to N¼ 2600),” accessed Jan. 24, 2023, www.packomania.com

[38] Katzenberger, M. J., Albert, D. L., Agnew, A. M., and Kemper, A. R., 2020,
“Effects of Sex, Age, and Two Loading Rates on the Tensile Material
Properties of Human Rib Cortical Bone,” J. Mech. Behav. Biomed. Mater., 102,
p. 103410.

[39] Holcombe, S. A., and Derstine, B. A., 2022, “Rib Cortical Bone Thickness
Variation in Adults by Age and Sex,” J. Anat., 241(6), pp. 1344–1356.

[40] Iraeus, J., and Lindquist, M., 2016, “Development and Validation of a Generic
Finite Element Vehicle Buck Model for the Analysis of Driver Rib Fractures in
Real Life Nearside Oblique Frontal Crashes,” Accid. Anal. Prev., 95, pp. 42–56.

[41] Reed,M. P., Ebert, S.M., Jones,M. L. H., and Hallman, J. J., 2020, “Prevalence of
Non-Nominal Seat Positions and Postures Among Front-Seat Passengers,” Traffic
Inj. Prev., 21(Suppl. 1), pp. S7–S12.

[42] Park, J., Ebert, S. M., Reed, M. P., and Hallman, J. J., 2016, “A Statistical Model
Including Age to Predict Passenger Postures in the Rear Seats of Automobiles,”
Ergonomics, 59(6), pp. 796–805.

[43] Forman, J., Kent, R. W., Mroz, K., Pipkorn, B., Bostrom, O., and Segui-Gomez,
M., 2012, “Predicting Rib Fracture Risk With Whole-Body Finite Element
Models: Development and Preliminary Evaluation of a Probabilistic Analytical
Framework,” Ann. Adv. Automot. Med., 56, pp. 109–124.

[44] Larsson, K.-J., Blennow, A., Iraeus, J., Pipkorn, B., and Lubbe, N., 2021, “Rib
Cortical Bone Fracture Risk as a Function of Age and Rib Strain: Updated Injury
Prediction Using Finite Element Human Body Models,” Front. Bioeng.
Biotechnol., 9, p. 677768.

[45] RCore Team, 2022, “R:ALanguage andEnvironment for Statistical Computing,”
R Foundation for Statistical Computing, Vienna, Austria.

[46] Friedman, J., Hastie, T., and Tibshirani, R., 2010, “Regularization
Paths for Generalized Linear Models Via Coordinate Descent,” J. Stat. Software,
33(1), pp. 1–22.

[47] Gramacy, R. B., 2016, “LaGP: Large-Scale Spatial Modeling Via Local
Approximate Gaussian Processes in R,” J. Stat. Software, 72(1), pp. 1–46.

[48] Kuhn, M., 2008, “Building Predictive Models in R Using the Caret Package,”
J. Stat. Software, 28(5), pp. 1–26.

[49] Scrucca, L., 2013, “GA: A Package for Genetic Algorithms in R,” J. Stat.
Software, 53(4), pp. 1–37.

[50] Pal, C., Tomosaburo, O., Vimalathithan, K., Jeyabharath, M., Muthukumar, M.,
Satheesh, N., and Narahari, S., 2014, “Effect ofWeight, Height and BMI on Injury

Outcome in Side Impact Crashes Without Airbag Deployment,” Accid. Anal.
Prev., 72, pp. 193–209.

[51] Forman, J. L., and McMurry, T. L., 2018, “Nonlinear Models of Injury Risk and
Implications in Intervention Targeting for Thoracic InjuryMitigation,” Traffic Inj.
Prev., 19(Suppl. 2), pp. S103–S108.

[52] Chapman, W. L., Welch, W. J., Bowman, K. P., Sacks, J., and Walsh, J. E., 1994,
“Arctic Sea Ice Variability: Model Sensitivities and a Multidecadal Simulation,”
J. Geophys. Res., 99(C1), pp. 919–935.

[53] Jones, D. R., Schonlau, M., and Welch, W. J., 1998, “Efficient Global
Optimization of Expensive Black-Box Functions,” J. Global Optim., 13(4),
pp. 455–492.

[54] Loeppky, J. L., Sacks, J., and Welch, W. J., 2009, “Choosing the Sample Size
of a Computer Experiment: A Practical Guide,” Technometrics, 51(4),
pp. 366–376.

[55] Wang, Y., Cao, L., Bai, Z., Reed, M. P., Rupp, J. D., Hoff, C. N., and Hu, J., 2016,
“A Parametric Ribcage Geometry Model Accounting for Variations Among the
Adult Population,” J. Biomech., 49(13), pp. 2791–2798.

[56] Holcombe, S. A., Kang, Y.-S., Derstine, B. A., Wang, S. C., and Agnew, A. M.,
2019, “Regional Maps of Rib Cortical Bone Thickness and Cross-Sectional
Geometry,” J. Anat., 235(5), pp. 883–891.

[57] Agnew, A. M., Murach, M. M., Dominguez, V. M., Sreedhar, A., Misicka, E.,
Harden, A., Bolte, J. H., IV, Kang, Y., Stammen, J., and Moorhouse, K., 2018,
“Sources of Variability in Structural Bending Response of Pediatric and
Adult Human Ribs in Dynamic Frontal Impacts,” Stapp Car Crash J., 62, pp.
119–192.

[58] Larsson, K.-J., Iraeus, J., Holcombe, S., and Pipkorn, B., 2023, “Influences of
Human Thorax Variability on Population Rib Fracture Risk Prediction Using
Human Body Models,” Front. Bioeng. Biotechnol., 11, p. 1154272.

[59] Park, B.-K. D., Jones, M. L. H., Ebert, S., and Reed, M. P., 2022, “A Parametric
Modeling of Adult Body Shape in a Supported Seated Posture Including Effects of
Age,” Ergonomics, 65(6), pp. 795–803.

[60] Svendsen, D. H., Martino, L., and Camps-Valls, G., 2020, “Active Emulation of
Computer Codes With Gaussian Processes—Application to Remote Sensing,”
Pattern Recognit., 100, p. 107103.

[61] Fuhg, J. N., Fau, A., and Nackenhorst, U., 2021, “State-of-the-Art and
Comparative Review of Adaptive Sampling Methods for Kriging,” Arch.
Comput. Methods Eng., 28(4), pp. 2689–2747.

[62] Leledakis, A., €Osth, J., Iraeus, J., Davidsson, J., and Jakobsson, L., 2022,
“The Influence of Occupant’s Size, Shape and Seat Adjustment in Frontal
and Side Impacts,” Proceedings of the IRCOBI Conference, Porto, Portugal,
Sept. 14–16, pp. 549–584.

031008-12 / Vol. 146, MARCH 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/biom

echanical/article-pdf/146/3/031008/7235935/bio_146_03_031008.pdf by guest on 22 February 2024

https://www.divaportal.org/smash/get/diva2:1471432/FULLTEXT01.pdf
https://www.divaportal.org/smash/get/diva2:1471432/FULLTEXT01.pdf
www.packomania.com
http://dx.doi.org/10.1016/j.jmbbm.2019.103410
http://dx.doi.org/10.1111/joa.13751
http://dx.doi.org/10.1016/j.aap.2016.06.020
http://dx.doi.org/10.1080/15389588.2020.1793971
http://dx.doi.org/10.1080/15389588.2020.1793971
http://dx.doi.org/10.1080/00140139.2015.1088076
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503420/
http://dx.doi.org/10.3389/fbioe.2021.677768
http://dx.doi.org/10.3389/fbioe.2021.677768
https://pubmed.ncbi.nlm.nih.gov/20808728/
http://dx.doi.org/10.18637/jss.v072.i01
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.18637/jss.v053.i04
http://dx.doi.org/10.18637/jss.v053.i04
http://dx.doi.org/10.1016/j.aap.2014.06.020
http://dx.doi.org/10.1016/j.aap.2014.06.020
http://dx.doi.org/10.1080/15389588.2018.1528356
http://dx.doi.org/10.1080/15389588.2018.1528356
http://dx.doi.org/10.1029/93JC02564
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1198/TECH.2009.08040
http://dx.doi.org/10.1016/j.jbiomech.2016.06.020
http://dx.doi.org/10.1111/joa.13045
http://dx.doi.org/10.4271/2018-22-0004
http://dx.doi.org/10.3389/fbioe.2023.1154272
http://dx.doi.org/10.1080/00140139.2021.1992020
http://dx.doi.org/10.1016/j.patcog.2019.107103
http://dx.doi.org/10.1007/s11831-020-09474-6
http://dx.doi.org/10.1007/s11831-020-09474-6
http://www.ircobi.org/wordpress/downloads/irc22/pdf-files/2275.pdf

	cor1
	l
	1
	2
	FD1
	FD2
	FD3
	FD4
	3
	4
	5
	6
	7
	1
	8
	9
	10
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62

