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ABSTRACT Virtual evaluation of automotive safety with variation in occupant posture and shoulder belt
fit is gaining importance, and there is a need of methods facilitating analysis of occupant postures in
driving studies. This study is aimed to develop an AI-based computer vision method to automatically
quantify occupant posture and shoulder belt position over time in a car. Traceable defined key points on the
occupant were related with the shoulder belt and quantified over time in real 3D coordinates by predefined
key measurements, utilising the underlying spatial information of a Intel RealSense 3D Camera. The key
points are defined as traceable key points relevant to relate the occupant to the vehicle environment and
to estimate shoulder belt position. Key point prediction results suggest an average deviation of around
1cm per coordinate, which enable a reliable spatial categorization of the respective tracked occupant by
analyzing the key measurements. This method providing continuous information of the occupant position
and belt fit will be useful to identify common occupant postures as well as more extreme postures, to be
used for expanding variations in postures for vehicle safety assessments.

INDEX TERMS Computer vision, neural networks, seating postures, transfer learning.

I. INTRODUCTION

OCCUPANT safety in vehicles is evaluated through crash
tests, using anthropometric test devices (ATDs), which

represent humans. Legal requirements and consumer rating
crash safety programs are well described in test protocols.
The ATDs are positioned in standardized sitting postures [1].
However, in real life, the variation of sitting postures may
be larger than those represented by the standardized sit-
ting postures used in current crash tests [2]. Sitting posture
may vary depending on vehicle environment, personal pref-
erences, anthropometric differences and vehicle dynamics.
Sitting posture and belt fit may also vary over time, for com-
fort reasons. Consumer rating programs like EuroNCAP [3]
and IIHS [4] have started to explore virtual testing besides
traditional crash tests and that opens up for parameter studies
including a greater range of sitting posture. There is a need
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to increase the knowledge of variation in sitting postures that
takes place in real life. Therefore, reliable data collected in
real life conditions is needed to verify the existing protocols
or show potential for improvement.
In order to explore the 3D video footage data of occupant

postures and belt fit in cars, it is often necessary to review
single frames and document the information manually. This
limits the analysis of driving studies to a subset of the whole
data set, assuming it represents the whole trip. A method,
which allows an automated analysis of videos would provide
improved quality and allow to analyse all collected film data.
There are several methods to classify seat belt usage in

cars, such as using 2D cameras inside the car. A portable
warning system with data collected inside the car is proposed
in [5]. The underlying detection method of the seat belt is a
hard coded template, which utilizes the assumption, that the
seat belt has an degree of around 45 degrees. The authors
of [6] recognize incorrect positioning of the seat belt by the
“acceptable distance of the seat belt from the neck” of drivers
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or passengers to avoid neck injuries. They collect 4 differ-
ent seat belt positions (fixed height of contact point of seat
belt and b pillar) and classify, whether the seat belt fits in a
proper way or not, dependent on the position of the height
of the contact point. In [7], at first the shoulder and hip key
points are detected and on the basis of that, the seat belt is
detected with a feature vector to find the seat belt between
the shoulder and hip key points. However, the method does
not relate the shoulder belt position to the body key points.
An approach to examine the seat belt fit of a person was
suggested in [8], where a classifier separates various shoul-
der belt positions on a person. There are large data sets like
Common Objects in Context (COCO) [9], which provide a
large amount of key point annotations of persons in vari-
ous positions. A notable attempt to process images, which
utilizes the COCO data set, was proposed in [10]. Here the
authors detected the seat belt with a semantic segmentation
and conducted a human posture estimation by detecting the
key points of a person. The mentioned data sets and meth-
ods in the literature focus on a 2D image evaluation and
detect key points in a unreliable way, because the location
of the key points are not explicitly defined in a traceable
and repeatable manner.
There are several approaches to monitor sitting posture,

and some use a categorization method. The authors of [11]
collect 3D footage of persons sitting at a desk and classify
the images into 14 different categories after applying feature
enhancement. In [12] a quantitative assessment of posture with
a wear-able monitoring system has been conducted to detect
poor sitting postures causing neck or back pain. The system
can give instant feedback to the user. In [13] a smart chair
with pressure sensors is utilized to collect data. Afterwards
the postures are classified into 15 different categories. A real
time posture recognition system is proposed in [14], where a
Kinect camera is used to collect point cloud data. Afterwards,
the frames are classified into 8 different categories.
An interesting method to automatically analyze 3D videos

was proposed in [15], which algorithmically tracks the head
position of the passenger in a car by utilizing an underlying
3D point cloud data and partially analyses the shoulder belt
positions manually. Reference [16] also monitored postures
with a Kinect camera in order to classify different tasks of
the driver with the underlying recorded information of head
rotation vectors and upper body joints in 3D.
However, there are limited studies on real-time quantifi-

cation of both posture and belt fit of occupants. Methods
providing posture quantification over time can be used for
several applications. Smart restraint systems can be adapted
based on occupant posture and belt fit information, providing
improved occupant protection. Furthermore, driver assistance
application could benefit from this type of information.
Reference [17] mentions, that driver state is a process
over time, and by monitoring driver posture continuously
it may be possible to predict posture changes the driver are
about to do. A static image could not capture this temporal
context, such as a continuous video stream. There is also a

FIGURE 1. Image examples of dataset X.

need to improve the knowledge of the variations of sitting
postures, to include a greater variation of sitting postures
when evaluating crash safety of cars.
The aim of this study was to develop an end-to-end ana-

lytics pipeline for video data, which automatically quantifies
the front seat passenger’s sitting posture and shoulder belt
position continuously in a car with key points, which are
defined from an occupant safety and comfort perspective.
This enables an automatic, continuous quantification of pos-
ture movement of passengers in cars by detecting key points
and relating them with different restraint systems in a car.

II. METHODS
A. DATA COLLECTION
A driving study was conducted with 11 test persons (TP) as
front seat passengers in a large passenger car. The number
of participants was limited due to the Covid-19 situation.
All test persons participated voluntarily and they consented
to use of their video data for method development and for
publishing. The total driving time took about 1 hour per
passenger and included both rural and urban areas. Video
frames were collected with an Intel RealSense Depth Camera
D415 [18] with 3 frames per second, attached to the front
window allowing a front view of the passenger. The camera
captured the whole upper body, including the pelvis region.
Technical details are denoted in the Appendix (Table 8),
examples are visualized in Figure 1. A target marker was
attached at the jugular notch, directly on the skin of the test
person.
The camera supports a frame based video collection,

which is able to capture various resolutions with color chan-
nels (RGB) and spacial channels (XYZ coordinates in meter)
for each pixel as visualized in Figure 17. The camera mea-
sures the z coordinate, which is the depth distance of a pixel
to the camera and computes the x (vertical position) and
y (lateral position) coordinate with the provided Software
Development Kit from Intel. Every frame of the recorded
video is in the format RH×W×C: (Height H: 840, Width W:
480, Channel C: 6).

B. DATA ANNOTATION
Figure 2 shows an image with an orange bounding box,
which defines the location of the person in the image with the
COCO annotator [19]. Furthermore the seat belt is marked
with a polygon.
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FIGURE 2. Example of one image in dataset X, annotated with COCO
Annotator [19]; it supports bounding boxes, key points and polygons.

Several body key points were defined on the head, shoul-
der and upper sternum, and they were annotated according
to a traceable, properly defined schema (see Figure 2).
The key point ‘upper sternum’ is defined as the surface

point on the skin or clothing of a person at the jugular
notch. The key point will be used to trace the torso x, y, z
position of a person in relation to the center line of the seat.
The jugular notch is a bony landmark easy to identify on
a person, which increases the quality of the data collection.
This landmark will give information if the person is moved
laterally from the center line of the seat, but also if the
person is leaning forward.
The two vertical torso lines are defined laterally alongside

the torso through the armpits. Secondly, a horizontal line is
defined at the level of the ‘upper sternum’ key point in par-
allel to the upper torso. The key points of the shoulders
are defined by moving 1cm (in real coordinates) from the
intersections of the horizontal upper sternum line and vertical
torso lines to the center of the person. The key point ‘right
shoulder’ and ‘left shoulder’ are related to the respective
side from the occupant’s perspective. The outboard shoulder
(meaning right shoulder in this data collection) is of partic-
ular interest, because it will be relate the shoulder belt to
the shoulder key point, providing information if the shoulder
belt is off the shoulder or far out on the shoulder, which are
safety critical shoulder belt positions. The ‘eye’ key points
are defined as the center of the respective pupil and is used
to quantify the head position. From safety perspective, it is
relevant to understand how the head is positioned relative
the head restraint.
Other key points like the nose, ears, elbows and wrists are

also present in the dataset. They are more straightforward to

FIGURE 3. Visualization of pipeline with and without ground truth bounding boxes.

define and therefore an explicit definition has been omitted,
an example annotation is visualized in Figure 2.

C. SEMANTIC SEGMENTATION
A ResNet-101 backbone was used in combination with a
feature pyramid network. The goal was to obtain a binary
pixel wise classifier for the two classes ‘seat belt’ and ‘back-
ground’. The training process was conducted with the 271
training, 68 validation and 223 test samples. The sampling
process of the training and validation data, which is an
heuristic approach to ensure a high variance within the data,
is outlined in Appendix-D. The test dataset was obtained by
sampling every 500th frame from dataset X. Each image has
a corresponding ground truth annotation, which defines, if
a pixel belongs to the class ‘seat belt’ or not. The model
architecture of the ResNet-FPN allows an image input of the
dimension 224x224x3. For dataset X the whole image was
resized to the desired dimension and used as input. The pro-
cessing pipeline of the semantic segmentation is illustrated
in Figure 12. At first, the original image was resized. Then
the network passed the input forward and assigned a class
to each pixel. Resizing the prediction yielded the prediction
with the same size as the input image. Details of the training
process are denoted in the Appendix.

D. HUMAN POSTURE ESTIMATION
On the key point leader board of the COCO website [9] one
can see the currently best performing neural network archi-
tectures, which detect the key points of a non-published test
set. The HR-Net achieves very good results on this bench-
mark. The MIT licence and a good code quality with a well
maintained GitHub repository, to be able to further extend the
method, led to the selection of the HR-Net [20]. The pipeline
is depicted in Figure 3. The original input in Figure 3(a) is
the basis for the detection of the person in the image. For the
‘refinement’ of the HR-Net, which means the re-training and
validation of the HR-Net with self-annotated data, ground
truth bounding boxes (Figure 3(b)) of the person with corre-
sponding key points were provided. These bounding boxes
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were cropped, slightly adjusted and then used as input for
the HR-Net refined, a prediction of relevant key points is
visualized in Figure 3(c). The training procedure, including
bounding box preparation and data augmentation of [20] to
predict the 18 key points with relocated COCO key points as
defined in Section II-B and Upper Sternum) was replicated.
The focus of the key point detection task was to accu-

rately detect the key points within the given environment.
This was done by adjusting the last layer from the dimen-
sions 96x72x17 to 96x72x18 and re-training the network as
described below.

1) LOCATING THE PERSON IN AN IMAGE

The key points will be predicted with detected bounding
boxes of persons, obtained by the neural network ‘Faster
R-CNN ResNet-50 FPN’ [21]. The quality of the key point
detections on unseen data depends on the accuracy in detec-
tion of the person. Thus, to measure the ‘real’ performance
of the pipeline, the person detection results of ‘Faster R-
CNN ResNet-50 FPN’ were used as a basis to measure the
performance on unseen data in the testing stage.
For the scope of this work it would have been ideal, if the

bounding boxes of the persons, which were detected by the
‘Faster R-CNN ResNet-50 FPN’, would have been detected
with a high confidence. This could be realized, as each of
the region proposals (bounding boxes) of the ‘Faster R-CNN
ResNet-50 FPN’ come with ‘scores that estimate probability
of object or not object for each proposal’ [21]. The score is
a value between 0 and 1, in the context of this work 0 means
the region proposal contains a person with low probability,
and 1 that there is a person in the image. The ‘acceptance’-
threshold for the present pipeline was set to 0.9, in order
to only detect regions where a person is in the image with
a very high confidence. Furthermore, only region proposals
with a reasonable size of a width of more than 150 pixels
were accepted, excluding very small bounding boxes which
do not contain a person. Further reasoning regarding the
relation between locating the person in the image and the
key point prediction is attached in the Appendix.

2) 2D-ACCURACY HUMAN POSTURE ESTIMATION

In order to measure the accuracies of human posture esti-
mation in 2D, key point similarity (KS), mean key point
similarity (mKS) and object key point similarity (OKS)
were defined. The following definitions elaborate how these
metrices are mathematically calculated.
Definition 1: The metric Key Point Similarity (KS) mea-

sures the similarity between the prediction and the ground
truth of one key point. It is defined as

KS(kpid) = exp

⎛
⎜⎝

−
∥∥∥k̂pkpid − kpkpid

∥∥∥2

2s2k2
kpid

⎞
⎟⎠,

kpid ∈ {0, . . . , 17}
with the negative squared Euclidean distance between the
ground truth location of key point kpid, denoted as kpkpid

and the predicted location of key point kpid, denoted as
k̂pkpid, the object scale s (root of the area of bbpj) and a key
point dependent constant kkpid which controls the decline of
the Gaussian function.
Definition 2: The metric Mean Key Point Similarity (mKS)

measures the similarity between the prediction and ground
truth of one key point over the whole dataset X, which
includes the bounding boxes bbpj, j = 1, . . . ,N, which
define the location of the persons. The mKS is defined as

mKS(X,kpid) = 1

N

N∑
j=1

exp

⎛
⎜⎝

−
∥∥∥k̂pkpid,j − kpkpid,j

∥∥∥2

2s2j k
2
kpid

⎞
⎟⎠,

kpid ∈ {0, . . . , 17}
with the negative squared Euclidean distance between the
ground truth location of key point kpid, denoted as kpkpid,
and the predicted location of key point kpid, the object scale
sj (root of the area of bbpj) and a key point dependent
constant kkpid (numerical values can be found in Table 7)
which controls the decline of the Gaussian function.
Furthermore, the metrics Object Key Point Similarity

(OKS) and Average Precision were used as defined in the
COCO challenge [9].

3) 3D-ACCURACY HUMAN POSTURE ESTIMATION

Besides hardware related constraints, predictions naturally
deviate from ground truth annotations. The metric aver-
age 3D-accuracy measures the deviation of one key point
on coordinate level. The following definition can be used
interchangeably for the x, y and z coordinate:
Definition 3: Let bbpj, j ∈ {1, . . . ,N} be ground truth BB

annotations, which define the location of a person in dataset
X. Furthermore, let kpkpid,j,x be the annotated, ground truth x-
coordinate of a key point and k̂pkpid,j,x be the corresponding
prediction of the key point of bbpj. The average accuracy
of the x-coordinate in 3D (aa_3Dx) for the whole dataset is
determined by

aa_3Dx,kpid = 1

N

N∑
j=1

√(
kpkpid,j,x − k̂pkpid,j,x

)2

The calculation is possible for each key point, which is
defined by the ‘kpid’ from Table 7.

Furthermore, the absolute average deviation for one key
point will be provided.
Definition 4: Let bbpj, j ∈ {1, . . . ,N} be ground truth BB

annotations which define the location of a person in dataset
X. Furthermore, let kpkpid,j,x be the annotated, ground truth x-
coordinate of a key point and k̂pkpid,j,x be the corresponding
prediction of the key point of bbpj. The absolute average
accuracy in 3D (aaa_3D) for the whole dataset is determined
by

aaa_3Dabs,kpid = 1

N

N∑
j=1

√√√√
∑

i∈{x,y,z}

(
kpkpid,j,i − k̂pkpid,j,i

)2
.
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FIGURE 4. Pipeline to approximate the shoulder belt with a line. Seat belt pixels which capture the torso are selected, then a line is fitted through the spacial information
(xyz-coordinates) of these pixels.

The calculation is possible for each key point, which is
defined by the ‘kpid’ from Table 7.

E. KEY MEASUREMENTS
1) SHOULDER BELT APPROXIMATION

The shoulder belt was approximated with a line, to
facilitate the computation of the distances related to the
shoulder belt. The seat belt consists of a shoulder belt
restraining the torso and a lap belt restraining the pelvis.
In order to obtain a good line fit, which captures the shape
of the shoulder belt, the segmentation of the lap belt must
be neglected. Since all the videos were captured from the
same angle and the lap belt was approximately at the same
position for all test persons in the data, all the pixels below
the 600th row in the image were treated as ‘back ground’.
Figure 4(a) shows the pixels (green), which were used to
compute the line fit, and those which were excluded (red).
All available spacial information of the seat belt pixels,

which were above the 600th row, were used as a basis for
the further computation, depicted in Figure 4(b). Note here,
that the camera does not capture spacial information of all
pixels (see Figure 17(a)).
Let A ∈ R

N×3 be the points in three dimensional space
and Ā be the centered points around the column wise mean
x0 of the data. The best line fit is defined as the line

l = x0 + λx, λ ∈ R, (1)

which minimizes the squared perpendicular distances d
between the line l and the centered points Ā,

N∑
i=1

d(ai, l)
2.

Utilizing NumPy’s [23] singular value decomposition, the
left-singular vectors, the eigenvalues and the right-singular

vectors were computed. The right-singular vector corre-
sponding to the largest eigenvalue of Ā yields the desired
vector x in (1), which minimizes the sum of the squared
perpendicular distances of the points Ā to the line l [24]. An
example is visualized in Figure 3(c).

2) SHOULDER BELT DISTANCE TO RIGHT SHOULDER

The first key measurement is the shortest distance of the seat
belt line to the key point ‘right shoulder’. The calculations
were conducted with the approximated seat belt line l and
the spacial information of the key point right shoulder, which
are denoted as kprs,xyz. The shortest distance is the length of
the perpendicular line between the 3D-line l and the 3D key
point kprs,xyz and was computed according to the following
steps:

1) Calculate centered key point k̄prs,xyz = kprs,xyz − x0
2) Project the centered key point on to the direction vector

x of line l: p = <x,k̄prs,xyz>
‖x‖ · x

3) Calculate the distance drs,sb between right shoulder (rs)
and seatbelt (sb)
drs,sb = d(k̄prs,xyz, p) = ‖k̄prs,xyz − p‖

4) Determine sign s, whether the y-component of the key
point is above or below the projection:

s =
{−1, if k̄prs,y < py

1, if k̄prs,y > py

5) The result is seatbelt_dist = s · drs,sb
The y-axis was taken as a basis to determine, if the key

point ‘right shoulder’ is above or below the approximated
line of the shoulder belt. This attempt turned out to be unre-
liable, likely due to a slightly skewed camera angle and
therefore a skewed 3D-coordinate system. Therefore the y-
axis in 2 dimensional space (i.e., the pixel coordinate system)
was taken as a basis to determine the sign, whether the shoul-
der key point was below (−) or above (+) the approximated
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TABLE 1. The metric intersection over union (IoU) for training, validation and test
datasets; evaluation has been done by the best model state according to the
validation dataset.

shoulder belt line in step 4. Figure 14 illustrates the con-
ducted computation on a 2D, pixel-wise basis. Note here,
that for the visualization purpose, the shoulder belt approxi-
mation (blue line) and the projection of the key point ‘right
shoulder’ onto the line (yellow point) in Figure 14 have been
calculated on a pixel wise (2D) level separately.

3) UPPER TORSO POSITION

The upper torso position is defined with the spacial
information of the predicted key point ‘upper sternum’,
which will be denoted as kpus,xyz.

To ease the interpretation of the measurement, it was cen-
tered around a point q0 on the seat, which was defined and
illustrated in the Appendix-C in Figure 18. This center q0
could be different for each test person, due to seat adjust-
ments prior the drive started. No adjustments of the seats
were done during the ride. Therefore, the final configuration
of the seat (Figure 18) after the drive was used for each test
person to calculate the measurement. The result of the torso
position of the person of interest is a centered key point
k̄pus,xyz = kpus,xyz − q0 for each frame, which measures the
lateral, vertical and depth position between the point on the
seat and the key point upper sternum.

4) POSITION OF THE HEAD IN RELATION TO THE HEAD
REST

Another key measurement is the position of the head in
relation to the head rest. It was calculated with the spa-
cial information of the key point ‘right eye’ (denoted as
kpright_eye,xyz), which was set in relation to a fixed point on
the center-line of the headrest x0 (Appendix, Figure 19):

k̄pleft_eye,xyz = kpleft_eye,xyz − x0.

The determination of this fixed point were done for all per-
sons after they left the car, in order to take the correct seat
configuration into account.

III. RESULTS
A. SEMANTIC SEGMENTATION
The 2D result of the training process is reported in Table 1
in the metric Intersection over Union (IoU). The IoU of the
test set is 0.75. A comparable prediction quality is depicted
in the Appendix in Figure 12, which shows a prediction of
the test set with an IoU of 0.7.

B. 2D ACCURACY KEY POINTS
1) RESULTS WITH GROUND TRUTH BOUNDING BOXES

Table 2 reports the mKS on test dataset X, computed with
ground truth bounding boxes. Results are provided for the
original HR-Net and the refined version (HR-Net refined).

TABLE 2. Results of human posture estimation on test dataset X. Mean key point
similarity (mKS) is provided for the HR-Net and HR-Net refined. The numbers in this
figure consider the case, when the test dataset is defined by annotated ground truth
bounding boxes.

TABLE 3. Results of human posture estimation on test dataset X. Mean Key point
similarity (mKS) is provided for the HR-Net and HR-Net refined. The numbers in this
figure consider the case, when the test dataset is defined by bounding boxes, which
are obtained by predictions of the “Faster R-CNN ResNet-50 FPN” [21].

The prediction quality of the right eye was about the same
for both networks, around 0.97 mKS. The right shoulder
averaged at 0.9755 mKS for the HR-Net and at 0.9937 mKS
for the HR-Net refined. The Upper Sternum had a mKS of
0.9956 for the refined version and is not detected by the
original architecture. Figure 10 visualizes these numerical
values. ‘Tot. ann.’ is the amount of ground truth annotations,
which are present (visible) in the test dataset of X.

2) RESULTS WITH REGION PROPOSALS OF A
PERSON DETECTOR

The mKS will be provided for all the detected bounding
boxes ˆbbpj, j ∈ {1, . . . ,N} by the ‘Faster R-CNN ResNet-50
FPN’ network. Note here, that these results were obtained by
evaluating the detected bounding boxes (183) and neglecting
the rest of the ground truth bounding boxes (39), which were
not detected.
The right eye has a mKS of around 0.95 for both networks

(Table 3). The key point right shoulder averaged at 0.9636
(HR-Net) and 0.9765 (HR-Net refined) respectively and the
Upper Sternum was detected with an mKS of 0.9794 by the
HR-Net refined. These numerical values are visualized in
Figure 11.

C. 3D ACCURACY KEY POINTS
1) 3D RESULTS WITH REGION PROPOSALS OF A
PERSON DETECTOR

Table 4 depicts the results for test dataset X, where the
predictions of the HR-Net refined were based upon bounding
boxes, which were predicted by the ‘Faster R-CNN ResNet-
50 FPN’ [21]. The coordinate-wise average accuracy were
at around 1cm for each key point, the absolute deviation
range was around 1.5-2cm. There were 183 bounding boxes,
which define the location of persons. As described above,
the HR-Net refined predicted a 2D pixel location in an image
for each key point. The 3D spacial information (x, y and z
coordinates) at these 2D pixel locations were compared with
the ground truth spacial information in Table 4. There are
few missing 3D measurements when comparing ‘Amount of
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FIGURE 5. Illustration key points in a 3D point cloud.

TABLE 4. 3D accuracy results of human posture estimation with predicted bounding
boxes by the “Faster R-CNN ResNet-50 FPN” [21] on test dataset X in cm. The 3D
average accuracy for the x, y and z coordinate and the absolute accuracy is provided.

TABLE 5. 3D accuracy Results of human posture estimation with annotated, ground
truth bounding boxes on test dataset X in cm. The 3D average accuracy for the x, y
and z coordinate and the absolute accuracy is provided.

Measurements’ (AoM) in Table 4 with ‘Tot. ann.’ in Table 3.
These missing 3D measurements originate from 2D key point
locations which did not contain spacial information, due to
restrictive camera properties (Figure 17(a)), hence they were
neglected.

2) 3D RESULTS WITH GROUND TRUTH BOUNDING
BOXES

Table 5 depicts the results for test dataset X, where the
predictions of the HR-Net refined were based upon annotated
ground truth bounding boxes. There were 222 bound-
ing boxes, which defined the location of a person. The
coordinate-wise average accuracy was between 0.4 cm and
1 cm and the absolute accuracy range was around 1cm.

D. 3D RESULTS KEY MEASUREMENTS
1) RESULTS SHOULDER BELT—SHOULDER DISTANCE

Empirically measured results on the basis of one test drive
with TP 16 are illustrated in Figure 7. A negative value (−)
of the measurement means the key point ‘right shoulder’ is
below, a positive (+) that the key point is above the shoulder
belt. In the case of TP 16, distances of around -15cm, as
depicted in Figure 14(a), can be regarded a good fit of the
shoulder belt. The frames with distances above 0 indicate
shoulder belt positions on the outboard side of the shoulder

FIGURE 6. Illustration of the key measurements “shoulder belt to shoulder
distance,” “torso position” and “head position”.

FIGURE 7. The key measurement “shoulder belt distance to right shoulder” of
TP 16.

key point, with one example shoulder belt off the shoulder
as seen in Figure 14(b).

2) RESULTS TORSO POSITION

The lateral positions of the upper sternum (Figure 8), indicate
a tendency inboard skewness compared to the centerline of
the seat. The centerlized values of the depth position indicate
limited movements of extensive forward leaning of the upper
torso.

3) RESULTS HEAD POSITION RELATED WITH
HEAD REST

The head position relative the head rest, shows a spread in
lateral position with a higher tendency of inboard position
relative the centerline of the seat (Figure 9). There is limited
excessive forward position of the head.

IV. DISCUSSION
In order to optimise for the highest possible accuracy within
the key point detection task, the same persons are contained
in the training, validation and test set, as a very good gen-
eralization could not be expected due to the difficulty of the
task and the limited amount of test persons.
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FIGURE 8. Histograms of TP 16, which depict the vertical (x-axis), lateral (y-axis) and depth position (z-axis) as distance between the key point upper sternum and a point q0
on the seat.

FIGURE 9. Histograms of the vertical (x-axis), lateral (y-axis) and depth position (z-axis) of the head in relation to the headrest, for TP 16.

Intel guarantees the z-accuracy (depth position) of the
camera to be within a 2 percent range, the distance between
the occupant and the camera in the present setting is around
1m. However, the provided results suggest a better accuracy.

A. ACCURACY SHOULDER BELT APPROXIMATION
The 2D-segmentation results of the shoulder belt (Table 1)
clearly captured the shape of the shoulder belt (Figure 12).
As the underlying spacial information of the 2D pixels are
used to approximate the shoulder belt (Section II-E), the 3D
approximation can assumed to be accurate.

B. HUMAN POSTURE ESTIMATION
1) 2D RESULTS

The original HR-Net architecture does not detect the key
point ‘upper sternum’ and the shoulder key points are not
well defined (Tables 2, 3). Therefore, there was a need of a
precise, traceable definition of the key points in Section II-B
and retraining the original network with an additional key
point ‘upper sternum’ and refined shoulder positions. The

stated results in Table 2 compare the performance of the
networks on this definition of the key points, when the loca-
tion of the person in the image was annotated by a ground
truth bounding box. A visual comparison of the average
network performance is depicted in Figure 10, where one
can see a significantly better average performance of the
‘HR-Net refined’. The general performance of both networks
drop, when the ground truth bounding boxes, which defined
the location of a person in the image, were replaced by
predicted bounding boxes by the ‘Faster R-CNN ResNet-50
FPN’, as denoted in Table 3 and visualized in Figure 11. A
large contribution of this drop in average accuracy originates
from wrongly detected bounding box predictions. When a
bounding box without a person was used as input for the
HR-net, the network predicted a location for each key point
anyway. In the present test set, 3 out of 183 bounding boxes
do not contain a person. Fortunately they can be filtered
and neglected in a later stage: Certain key measurements,
which are computed with these key points, deviate around
a magnitude from the desired key measurements based on
the predicted bounding boxes.
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FIGURE 10. Comparison of predictions of original and refined HR-Net. The key
point upper sternum is not present in the original network (Figure 10(a)) and the
shoulder key point is not located as defined in Section II-B.

FIGURE 11. Comparison of predictions of original and refined HR-Net. The key
point upper sternum is not present in the original network (Figure 11(a)) and the
shoulder key point is not located as defined in Section II-B.

C. 3D RESULTS
The results of most key points in Table 5 significantly
improve in comparison to Table 4, and thus outline the poten-
tial of increasing average accuracy by improving the quality
of the bounding boxes. However, the results in Table 4 with
an average per coordinate accuracy deviation of approxi-
mately 1cm per key point constitute a reasonable basis for
the further computations.

D. KEY MEASUREMENTS
The findings of the present work were encouraging, as
it enabled a detailed data analysis of the collected video
footage. It was possible to quantitatively summarize the

• shoulder belt to shoulder key point
• torso position
• head position
in a reliable way. A visualization of the key measurements

is provided in Figure 6.
An example is depicted in Figure 14(a), where one can see

a good shoulder belt fit, where the shoulder belt is located
on the inboard side of the shoulder key point, indicating a
good shoulder belt fit with shoulder belt positioned on the
mid shoulder. In Figure 14(b), the shoulder belt is positioned
under the arm, a shoulder belt fit deviating from the norm.
The key measurement shoulder belt to shoulder key point
indicates a positive value as the belt moves off the shoul-
der. A shoulder belt fit which deviates from the norm is
illustrated in Figure 14(b). It depicts the setting where the
shoulder key point is above the shoulder belt, which always
is the case in the histogram range with positive distances.
The continuous nature of the distances enable a more detailed
analysis than proposed shoulder belt classifiers, which clas-
sify certain shoulder belt fits like ‘belted’, ‘unbelted’,. . .,
‘under shoulder’ in [8]. By filtering specific intervals within
the histograms of the key measurements, qualitative results
depicted in Section II-E were obtained.
The key measurement “position of the head in relation to

the head rest” shows whether the head is in line with the
head rest (lateral position in Figure 9) and also quantified
the depth distance between the head and the head rest (depth
position in Figure 9).
Similarly, the key measurement ‘Upper Torso position’

in Figure 8 indicates, whether the torso is in a centralized
position or not. In a minor fraction of this key measurement,
the evaluation was not reliable. Some predictions, where no
marker was visible at the upper sternum, seemed to be worse
than the testing results from Section III-B2 suggested. A
possible explanation is an overfitting behavior of the neural
network to the distinctive marker.
The quantitative analysis of the detection results are also

worth to note. Dependently on the TP, a fraction of around
40-90 percent of the frames were captured within the men-
tioned histograms above. The percentage of the respective
percentage for each person can be found in Table 6.
There are several explanations, why some frames were

neglected in the analysis, including no detected person on
the image, the detected region proposal for the person does
not fit criteria or no segmented shoulder belt on the image.
Furthermore, in the beginning or the end of a test drive,
there were no TP seated in the car.
Therefore, it was necessary to only accept region propos-

als of persons which were detected with a high confidence
and further filtering them, in order to have a good basis
for the key point detection in the next step. This trade
off accounted for the majority of the neglected frames.
This fraction of processed frames can be increased by
decreasing the confidence of the region proposals. However,
this would lower the average performance in Table 4
and Table 3.
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FIGURE 12. Pipeline for segmentation in order to detect the seat belt and background pixels. The predicted mask in sub figure (d) has an IoU of around 0.7.

FIGURE 13. Illustration of extreme postures, which can be samples by filtering for values at the tail of the respective Histograms.

Future Work: The shoulder belt was approximated by a
line. When the shoulder belt was fitted to a person, it usually
incorporated a curvature around the torso of a person. Other
shapes than a line might be better to capture this curvature,
and thus need further investigation.
The detection of the person by the ‘Faster R-CNN ResNet-

50 FPN’ [21] in the pipeline constituted the basis for
further computations and thus was important for the overall
performance. As it was not focused on this part, an easy
performance gain might be accomplishable by fine tuning the
hyper-parameters in the existing pipeline or experimenting
with new models in order to detect persons. The potential
improvement of this step can be revealed by comparing Table 4
with Table 5. Detecting the upper sternum in a more robust
way is likely be solvable by conducting driving studies with-
out the corresponding marker and train the network on data
without marker. The expected outcome would be a prediction,
which is less dependent on the marker, thus comparable results
to the shoulder key points can be assumed.
By including acceleration data to the analysis, the occupant

movement can be connected to the vehicle dynamics, in order

to understand if the movement is driven voluntarily by the
occupant themselves or by vehicle dynamics. To accomplish
a more complete quantification of the occupant posture, it
would be desirable to also track the hip, to understand if the
occupant is slouching forward with the hip. Furthermore, in
order to quantify leg and feet position, an additional camera
view would be necessary.

V. CONCLUSION
With the underlying spatial information of the Intel RealSense
3D camera [18], the shape of the shoulder belt was approx-
imated by a line and the spatial information of the occupant
key points were utilized to define occupant position relative to
the vehicle and also shoulder belt fit. This method, providing
continuous information of the occupant position and shoulder
belt fit, will be useful to identify common occupant postures
as well as more extreme postures, to be used for expanding
variations in postures for vehicle safety assessments.

APPENDIX
A. PIPELINE SEMANTIC SEGMENTATION
See Figs. 12 and 13.
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FIGURE 14. Key measurement “seat belt distance to right shoulder.” The left image
(14(a)) depicts the case, where the key point “right shoulder” is below (−) the seat
belt. The image on the right hand side (14(b)) shows an image where the key point is
above (+) the seat belt.

FIGURE 15. Definition and qualitative example of the key measurement “torso
position”.

B. QUALITATIVE EXAMPLES OF KEY MEASUREMENTS
See Figs. 14–16.

C. SUPPLEMENTARY MATERIAL
See Fig. 17.

D. DATA SAMPLING
The whole dataset with the resolution 848x480x6 consisted
of 110994 frames, stored within 13 different files. Two of the
files were recorded for test purposes. The remaining 11 files
respectively correspond to a test drive with a test person (tp):
The aim of the following sampling process was to reduce

the number of frames and ensure a high variance in the
dataset, in order to train and validate the neural networks in
this work.
The following steps were done separately for all frames

of each test person:

FIGURE 16. Definition and qualitative example of the key measurement “position of
the head in relation to the head rest”.

TABLE 6. Table, which shows the amount of processed frames and the total amount
of frames by the pipeline per test person. Furthermore, the fraction of the processed
frames has been computed.

1) down-sampling the images (rgb information
848x480x3) to gray scale (64x48x1)

2) performing a principal component analysis of all gray
scale frames of one person

3) clustering all frames of one person with PCA-
components.

The following Figure depicts the PCA components of
tp 16:
The rule for the pipeline was to include as many principle

components as needed to explain at least 75 percent of the
variance. The study of Figure 22 revealed, that around 20
PCA components were necessary for tp 16.
On the PCA features created above, a k-Means cluster-

ing was performed with different numbers of centroids. The
associated cost can be seen below:
A similar, almost power like decent without clear cut-

off for all test persons as illustrated in 22 was observed, a
rule was set to include 30 centroids for each file. These
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TABLE 7. Output channels of the HR-Net are linked by the key point ID (kpid) with the key point names. Each kpid corresponds to the respective channel in the last layer of the
HR-Net. Key point loss weight ρkpid weights the respective channel in the loss function. The falloff constant kkpid will be helpful to define meaningful accuracy metrics in a
later stage.

FIGURE 17. Visualization of underlying spacial information of data.

TABLE 8. Specifications of the dataset.

steps were done for all tps, resulting in the following
Figure, which shows the frames in each cluster of the
respective tp.

FIGURE 18. Visualization of point on seat, which has been used to normalize
measurements of the torso movement. Blue dots have been selected by the distinctive
shape of the seat, then the centroid (green) of them has been computed and the
underlying spacial information have been used for further computations.

The training and validation dataset were obtained by ran-
domly sampling from these clusters, resulting in around 340
images. 80 percent were used as training images and 20
percent of the images were used to validate the networks.
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FIGURE 19. Visualization of point on seat, which has been used to normalize the
measurement “Movement of the head in relation to the headrest.” Blue dots have been
selected by the distinctive shape of the head rest, then the centroid (green) of them
has been computed and the underlying spacial information have been used for further
computations.

TABLE 9. Information about study participants.

The heuristic approach described above ensured a high
variance within the training and validation dataset.
In order to measure the average performance of the whole

dataset, the test dataset has been sampled by equidistant
sampling of every 500th frame.

E. MEAN AVERAGE PRECISION
The mean average precision (for different thresholds ω),
which is the single most important metric for the COCO key
point detection task [9], was also provided for the present
dataset in Table 10. However, it was not the single most
important metric for the scope of this work, as a trade off
towards a lower recall (by setting the confidence score of

FIGURE 20. Illustration of camera mount.

FIGURE 21. Frames per test person.

the region proposals of the ‘Faster R-CNN ResNet-50 FPN’
to 0.9) was made in order to obtain a high precision value.

F. TRAINING SEGMENTATION
The neural network was trained for 50 epochs with the
ADAM optimizer and a weight decay regularization of
0.00003, the implementation of the weight decay regular-
ization follows [25]. The learning rate for the ResNet-101
backbone encoder part was 0.001 and the learning rate
for the FPN decoder part was 0.005. It was reduced by
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FIGURE 22. PCA components of tp16. The figure on top depicts the first 600 PCA
components ordered by magnitude on a logarithmic scale. The middle figure depicts
the first 50 PCA components and the bottom figure explains the accumulated variance
by the PCA components.

FIGURE 23. Illustration of the cost of a k-Means clustering algorithm for a varying
number of centroids, performed on the PCA components, which explain 75 percent of
the variance of tp 16.

FIGURE 24. Number of frames per cluster for each tp.

TABLE 10. Performance of the HR-Net refined on the annotated testset X. AP.50 and
AP.75 denote AP(X, 0.5, N = 183) and AP(X, 0.75, N = 183) respectively. APM and
APL denote the metric mAP for different object scales. In the present case, there have
only been bounding boxes exceeding an area of 9216 pixels, which is the threshold to
count as a large (L) image. mAP is computed as a mean across the thresholds
ω ∈ {0.5, 0.55, 0.6, . . . , 0.95}, interpolated across 100 recall values across all image
sizes (only L present).

a factor of 0.25, if the metric evaluated on the validation
dataset was not improving for 3 epochs, a heuristic approach
to get better generalization. Additional regularization was
conducted by applying dropout on the concatenated FPN
blocks with a rate of 0.25. The reason for different learn-
ing rates is due to the usage of pre-trained weights of the

encoder part. These pre-trained weights were obtained by
training the ResNet-101 architecture on the ImageNet clas-
sification task [26]. The pre-trained weights of the library
Segmentation Models [27] were used. The was to utilize the
pre-trained encoder part as a feature extractor, which is only
slightly adapted to the data by a low learning rate, while
accumulating features in the FPN decoder part, which could
be used to segment the image.
The training dataset was augmented with the help of the

library albumentations [28], which performed the following
transformations on an image each time it was presented to
the neural network:

1) A random rotation by 90, 180 or 270 degree with a
probability p = 0.5.

2) A cutout of random image pixels: By a probability of
50 percent, 8 pixel locations were chosen. For each
of these image locations, a width W and height H is
uniformly selected from an integer value of 1 to 8 and
then the rgb channels around the W × H area of the
respective location were set to 0.

3) A change in contrast or brightness by a factor of 0.1
with a probability of 0.1

4) A grid distortion with probability 0.1
5) A change in hue, saturation or value of the image: With

a probability of 0.5, an uniformly selected shift in hue
within the interval [−20, 20], a uniformly selected
shift in saturation within the interval [−30, 30] and
a uniformly selected shift in rgb-channel value in the
interval [−20, 20] was applied.

The validation and test dataset were not augmented,
because an optimal performance on undisturbed images was
desired. The neural network were trained with a mini-batch
size of 8 images, the training progress was measured with
the metric IoU (dataset X IoU in Table 1) and trained with a
weighted surrogate loss function consisting of Dice, Binary
Cross Entropy (BCE) and IoU metrics (dataset X WM in
Table 1) as an heuristic approach to obtain better class
separation1:

weighted metrics (WM) = 1.0 ∗ Dice
+ 1.0 ∗ BCE + 0.8 ∗ IoU.

Early stopping was applied, i.e., the best model state was
picked according to the validation dataset and the metric
IoU after each of the training processes.

1) RELATION OF PERSON DETECTION AND KEY POINT
ACCURACY

To get a better perspective on the performance of the
pipeline, precision and recall for different OKS-threshold
levels ω for the whole dataset X with N = 222 samples
were provided for the refined HR-Net:
The recall level of ω = 0.5 in Table 11 can be explained

by a large number of not detected bounding boxes. Loosely

1. IoU, Dice and BCE were defined in the Catalyst documentation [29].
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TABLE 11. Precision and recall values for various OKS-threshold levels of the
refined HR-Net.

speaking, the recall level is the fraction of the correctly
classified predictions (in terms of OKS( ˆbbpj) > ω) divided
by the sum of the correctly classified predictions and the
missing bounding boxes, which were not detected.
183 bounding boxes were actually detected by the ‘Faster

R-CNN ResNet-50 FPN’. 180 of them exceed the OKS clas-
sification threshold of ω = 0.5. Thus the corresponding recall
level is 180/219 = 0.8219.

The other recall levels in Table 11 are roughly the same,
which means that the bounding boxes, which were detected
by the ‘Faster R-CNN ResNet-50 FPN’ [21], were a good
basis for the consecutive key point prediction task, as the
recall did not significantly drop.
The precision was the most important metric in the scope

of this work, as it measured the fraction of the detected and
correctly classified bounding boxes divided by all detected
bounding boxes. It was crucial, that the key point predictions
of the detected bounding boxes had a good quality, as these
were the basis for further computations. This is the case,
as the precision was around or above 0.95 for the recall
levels ω ∈ {0.5, 0.75, 0.9}. It dropped significantly for the
threshold ω = 0.95, however the lower level of ω = 0.9 were
considered good enough for the following computations.
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