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ABSTRACT 

In one of the Advanced Crash Avoidance 
Technology (ACAT) projects, a computational 
simulation approach has been used to assess the 
potential benefit of three advanced Driver 
Assistance Technologies in a lane departure 
scenario. The main advantage of a computational 
simulation approach to driver assistance 
technologies evaluation is that a wide range of 
conditions can be explored at a comparatively low 
cost. Also, though multiple data sources related to 
traffic safety are available, few approaches make 
systematic and integrated use of them. Using them 
to validate simulation components provides a way 
of integrating data from various sources into a 
reusable format. 

When using simulation, the properties of each 
simulated component need validation. The 
objective of this paper is to describe data 
requirements for component validation, as well as 
how data which meet the requirements has been 
identified and extracted. The basic approach of the 
project is to look at each simulated component and 
determine which of its properties influence scenario 
outcome. Data sources which provide input on 
those properties are identified, and data from them 
is extracted and prepared for use in the simulation. 
To achieve a high level of detail and accuracy for 
all components, data from multiple sources are 
used including crash databases, field operational 
tests, testing on test-tracks and driving simulator 
experiments.   

The research conducted in this project shows that 
sufficient data can be obtained to validate the 
properties of the simulation components. There are 
limitations in available data for some sources 
which raises questions of representativity, but these 
can in principle be overcome by extended data 
collection. The research also shows that while 
extensive effort may have to go into validation the 
first time a simulation is developed, similar 
subsequent projects will require much less 

validation effort since the simulation components 
can be reused. 

INTRODUCTION 

This paper describes part of the research performed 
in one of the projects funded by NHTSA under the 
Advanced Crash Avoidance Technologies (ACAT) 
program [1], performed by a team of researchers 
from Volvo Cars, Ford and UMTRI (referred to as 
the VFU-team). The underlying purpose of the 
ACAT program has been to address gaps in current 
knowledge about the performance and likely 
effectiveness of new and emerging active safety 
technologies in reducing crash numbers.  

The VFU-team has focused its work on three 
advanced driver assistance technologies, developed 
by Volvo Cars, which address crashes initiated 
through lane departures. These crashes include road 
departure crashes, head-on collisions, sideswipes, 
and other crash modes. The technologies are Driver 
Alert Control (DAC), Lane Departure Warning 
(LDW), and Emergency Lane Assist (ELA). Driver 
Alert Control is designed to estimate the 
impairment level of a driver and inform the driver 
of his/her impaired state, where impairment is 
assessed through quality of lane keeping over time. 
The driver is informed of his/her state so as to 
support a decision to continue to drive. Lane 
Departure Warning is aimed at warning the drivers 
if they are inadvertently drifting out of their lanes. 
Under such a scenario, LDW supports the driver by 
generating a warning. LDW will not take any 
automatic action to prevent a possible lane 
departure. Responsibility for the safe operation of 
the vehicle remains with the driver. Emergency 
Lane Assist relies on the detection of the vehicle 
position with respect to the road lane markings as 
well as detection of vehicles (both oncoming and 
those being overtaken) in the adjacent lanes. If a 
lane drift or lane change maneuver is commenced 
and this implies a risk for collision with an 
oncoming or overtaking vehicle, ELA applies a 
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torque to the steering wheel in order to prevent 
collision and return the vehicle to its original lane.  

All of these driver assistance technologies aim at 
detecting degraded driving and to provide suitable 
information, warning, or intervention. Together 
they form a logical chain of warnings and 
interventions. DAC is expected to influence the 
exposure of drivers to episodes of drowsy driving 
and hence operates in the earliest phase. LDW and 
ELA are relevant to the evolution of vehicle 
kinematics during a conflict, and operate in the 
early and late conflict stages.  

Non-conflict     Conflict Imminent crash Crash Post-crash

DAC LDW ELA

crash avoidable crash unavoidable

 
Figure 1.  NHTSA crash phase timing. 

 

THE VFU-TEAM APPROACH – 
COMPUTATIONAL SIMULATION 

As described by NHTSA, an ACAT project should 
meet two goals. The first is to develop a formalized 
Safety Impact Methodology (SIM) tool to evaluate 
the ability of advanced crash avoidance 
technologies in full vehicle systems to solve 
specific motor vehicle safety problems. The second 
objective of the program is to demonstrate how the 
results of objective tests can be used by the SIM to 
establish the safety impact of a real driver 
assistance technology.  

The VFU-team has chosen to address the first goal 
by developing a SIM tool which at the core uses a 
detailed mechanism-based (continuous-time 
simulation) approach to represent the potential 
influence of driver assistance technologies. The 
basic SIM procedure starts by exploring real-world 
crash mechanisms using both statistical and in-
depth analysis of recorded crash events in order to 
understand contributory factors and event 
sequences, including the role of tiredness, 
distraction and judgment in actual crashes 
involving lane/road departure. This information is 
then used to develop a comprehensive set of 
Driving Scenarios (DS) which precede the crashes. 
The DS are then further parameterized in all 
aspects necessary to represent them in software via 
a computational model. This means that all 
components needed to evaluate the influence of a 
driver assistance technology in the DS (vehicle, 
driver, road environment and technology) are 
represented through computational sub-models 
interacting in a virtual environment rather than 
physical objects interacting in the real world. 
Following the definition and parameterization of 
the full DS set, multiple cases are sampled and run 
in a Monte-Carlo simulation. The computational 

model time-steps from the starting point of each DS 
until the DS has run for a pre-defined time interval 
(for example 10 or 20 seconds).  

The DS precede the crashes but they are not pre-
crash scenarios in the sense that a crash inevitably 
follows from DS development. Rather, crashes may 
or may not result from any given DS as it develops 
over time (this applies both to real driving and 
simulations). The DS are thus “coarse-grain” in the 
sense that they cover a broad range of situations 
which include the ones that lead to crashes but also 
a number of situations where no crash occurs. In 
other words, rather than looking at single case 
accident reconstruction, the aim is to generate an 
ensemble of crash/no-crash situations, and then 
study whether the crash avoidance technology 
under evaluation changes the overall proportions of 
crash/non-crash outcome for this ensemble. 
Running the simulation for all DS’s therefore 
results in two distributions of virtual conflicts and 
crashes, one with the technology and one without. 
These distributions are then mapped to real-world 
crash types and frequencies using some form of 
crash metric, as illustrated in Figure 2: 

 

crash metric 

1DS 2DS 

N DS 

without  with  

 

 
Figure 2.  Driving Scenario resolution for Monte 
Carlo simulation with and without the specific 
safety technology being evaluated. 

 

DATA REQUIREMENTS AND SOURCES IN 
A COMPUTATIONAL SIMULATION 
APPROACH 

It can be argued that all approaches to evaluation of 
a driver assistance technology have the same 
representation issues which must be addressed. 
Basically, the characteristics of the four 
components necessary for evaluation (driver, 
vehicle, technology and evaluation environment) 
should be either identical or at least sufficiently 
similar to their counterparts in real world crash 
characteristics, otherwise evaluation results could 
be called into question.  

Each of the components necessary for evaluation 
must be correctly represented in two aspects. One 
is the structural aspect. Taking the vehicle as an 
example, for the evaluation to be valid, one must 
first identify the characteristics of vehicles typically 
involved in the targeted crash type, and then find a 
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way to represent those characteristics in the actual 
evaluation. For physical measurements, this usually 
means bringing vehicles with those characteristics 
to the test track or out in the field. For 
computational simulation, it means implementing 
virtual vehicles with those characteristics in the 
simulation, with the general ability to interact with 
the other sub models. 

The second aspect of representation is more 
functional or dynamic in character. Each 
component needs a definition of (1) its initial state 
at the beginning of the evaluation and (2) how it 
should respond to change. Again using the vehicle 
as an example, one must provide clear values for 
the vehicle’s initial state in all test configurations 
(its initial speed, initial lane position, etc). One 
must also provide clear definitions of how it should 
react to, for example, a steering input from the 
driver (suspension settings, tire properties, etc).   

In these representation issues, a computational 
simulation approach faces a somewhat different 
challenge compared to evaluations based on 
physical measurements. Due to the possibility of 
running tens of thousands simulations with 
different component configurations, 
representativeness is less of a problem in a 
simulation approach. While in physical 
measurements one usually must select just a few 
configurations to represent the crash problem due 
to limitations in resources and time, in a simulation 
approach one can run most (or even all) possible 
configurations. On the other hand, since driver, 
vehicle, environment and technology 
characteristics all are represented as sub-models in 
a virtual environment rather than through their 
physical counterparts, extensive work has to go into 
making these models and the environment act as 
they would have in real life in all relevant aspects. 

The main challenge for a simulation approach 
therefore is one of validity rather than 
representativeness, and its outcome will depend on 
how well each sub-model represents its real life 
counterpart in the simulation of relevant aspects. 
This has consequences for how results from 
objective testing can be used in the SIM tool. 
Basically, to ensure that each sub-model represents 
its real life counterpart, all three sub-model aspects 
(functional structure, initial state and response to 
change) must be validated against real world data 
in some way. A substantial part of the VFU team’s 
work has therefore been devoted to retrieving and 
processing the structure and performance data 
needed for such sub-model development and 
validation.  

To achieve a high level of detail and accuracy for 
all components, data from multiple sources must be 
used. Though crash data from sources such as GES 
is a natural starting point for such work, and forms 

an essential part of defining the crash 
circumstances which the technologies under 
evaluation are meant to address, crash data in itself 
contains limited or no detail on a number of the 
pre-crash conditions or parameters which must be 
defined in order to perform reliable simulations.  

To overcome some of the limitations of crash data, 
the methodology developed in this project has been 
to let crash data supply “one leg of the tripod”, 
while the second and third leg is in naturalistic 
driving data and objective testing. Objective testing 
here refers both to testing of vehicle and 
technology performance (“technical testing”) as 
well as to testing of human-technology interactions 
(“human factors testing”).  

This means that in relation to the second objective 
of the ACAT program (demonstrate how results of 
objective tests can be used by to establish the safety 
impact of a real driver assistance technology), the 
role of objective testing is driven towards 
calibration and validation of computational sub-
models and their interaction in the simulation. Data 
sources used in this project include:  

• Design information and algorithms associated 
with the driver assistance technologies 

• Basic scientific knowledge about vehicle 
dynamics and driving dynamics 

• Statistically valid crash databases and detailed 
investigations of crash causation (GES, CDS, 
etc.) 

• Databases of naturalistic driving (obtained 
from previous Field Operational Tests) 

• Databases of roadway characteristics  

• Objective tests in the form of detailed 
technical tests of the vehicle and the driver 
assistance technologies, typically on a test 
track 

• Objective tests designed to capture typical 
ranges of human performance where the 
driver is in the loop, typically on a test track 
or in a driving simulator. 

In the following, the properties of each tripod leg 
will be described. The description will focus on 
how each tripod leg has been used to contribute to 
the development and validation of the 
computational sub-models. 

THE FIRST LEG OF THE TRIPOD - 
DEFINING SUB-MODELS USING CRASH 
DATA  

Data used directly to develop the sub-models used 
in the simulation include the National Automotive 
Sampling System General Estimates System 
(NASS GES) and NASS Crashworthiness Data 
System (CDS), crash data from the State of 
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Michigan, and roadway geometric information 
from the Highway Performance Monitoring System 
(HPMS). While HPMS is not strictly a crash data 
source, it is discussed here because its use is 
entwined with crash data. 

Using Statistical Crash Data 

The NASS GES is a nationally-representative 
sample of police-reported crashes, compiled by the 
National Center for Statistics and Analysis in the 
NHTSA. GES is a probability sample of motor 
vehicle crashes that occurred in the United States. 
The GES file covers crashes of all severities and all 
vehicle types.  Police accident reports (PARs) are 
sampled from approximately 400 police 
jurisdictions within 60 primary sampling units and 
sent to a contractor for coding. The GES data 
includes a description of the crash environment, 
each vehicle and driver involved in a crash, and 
each person involved in a crash. GES data are 
coded entirely from police reports, without any 
supplemental investigation. Consequently, the data 
in GES is limited to what is available on a PAR. 
GES typically includes records for about 100,000 
motor vehicles involved in 60,000 crashes. 

In relation to sub-model development and 
validation, the crash data in the GES file is 
primarily useful to at a high level characterize the 
DS relevant to the technologies. This formed a very 
important part of the work in the project, because 
even if the crash data itself does not contain all 
details needed to run simulations, it provides a 
delimitation of the crash problem and thus the 
framework within which further parameters and 
details are necessary to work out.  

The GES data include a set of variables that 
captures the sequence from just prior to the 
initiation of the “crash envelope” to the collision or 
other harm-inducing event. The crash envelope is 
defined as extending from the point in which the 
driver recognizes an impending danger or the 
vehicle was in an imminent path of collision with 
another vehicle, animal, or non-motorist to the 
point at which the driver either has successfully 
avoided the collision or the collision has occurred.  
Data elements record the vehicle maneuver 
immediately prior to the critical envelope (in the 
pre-crash maneuver variable), the event or 
condition that made the situation critical (critical 
event), the corrective action taken by the driver, 
and the stability of the vehicle after the maneuver. 
There is also an accident type variable that captures 
the relative position and movement of the vehicles 
leading to the first harmful event [2]. All of these 
variables appear in the GES and CDS data sets [3]. 

The approach to capturing crash events in GES 
(and CDS as well) is well-suited to a project 
focusing on evaluation of driver assistance 
technologies. Many other crash data systems focus 

on the first harmful event, or provide a sequence of 
events in the crash, which record the series of 
harmful events. But in crash avoidance research, 
information about the vehicle state prior to the 
initiation of the crash sequence and any harmful 
event is more interesting. The driver assistance 
technologies evaluated in this project all monitor 
vehicle position within the lane in normal driving, 
prior to any crash or conflict. Vehicle movement 
prior to the critical event (P_CRASH1) and critical 
event for this vehicle's first impact (P_CRASH2), 
in the GES file are therefore of primary interest in 
identifying the relevant crash types [4]. 

The identification of target crash types was 
accomplished primarily by the two variables, 
Vehicle movement prior to critical event 
(P_CRASH1) and critical event for this vehicle's 
first impact (P_CRASH2). However, a number of 
other variables were included to refine the 
identification of crashes that might be influenced 
by DAC, LDW or ELA. These variables record the 
number of vehicles in the crash, whether the 
vehicle was involved in the first harmful event in 
the crash, the travel speed of the vehicle, and 
whether the driver was under the influence of 
alcohol or drugs.  

Based on the general crash characteristics identified 
as relevant to the DAC, LDW or ELA technologies, 
four dynamically-distinct crash types were 
identified as relevant to the technologies.  

• Single-vehicle road departure 

• Prior lane-keeping, lane departure 

• Changing lanes, lane departure 

• Other lane or road departure, prior 
lane-keeping or changing lanes 

Furthermore, a number of vehicle, environmental 
and driver factors were examined in relation to the 
target crash types. The purpose was to identify 
factors associated with the crash types which could 
be used to specify the structural and functional 
aspects of the sub-models. For example, in relation 
to the environment, types of roadway, roadway 
alignment, weather, road surface conditions and 
light conditions were studied. In relation to the 
driver model, Driver fatigue was investigated.  

It was found that road type and road curvature are 
stable and can be assumed to be reliably reported. 
Weather, road surface conditions, and light 
conditions are less stable but can still be considered 
sufficiently reliable in the crash data. Driver fatigue 
however is both very difficult to identify and 
transient. However, there is no feasible alternative 
source of information other than the crash data. 
While many cases of fatigue may be missed, it is 
assumed that the cases that are identified are true 
cases of fatigue. 
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In the end, a total of 36 crash scenarios were 
identified, accounting for 96.6 percent of target 
crashes. Of these, the top 25 crash scenarios 
(accounting for 90.5% of the target crash scenarios) 
were targeted for simulation using the Safety 
Impact Methodology (see Table 1).  

Table 1. 

Top 25 Crash Scenarios for Targeted Crash 
Types, From GES 2002-2006 

Road type Roadway 

alignment

Weather & 

road surface

Light 

condition

Driver 

fatigued

Percent Rank

2 or more lanes, 

divided

Straight Not adverse, 

dry

Daylight No 19.7 1

2 or more lanes, 

undivided

Straight Not adverse, 

dry

Daylight No 9.9 2

2 or more lanes, 

divided

Straight Not adverse, 

dry

Not 

daylight

No 9.1 3

2-lane, 2-way 

undivided

Straight Not adverse, 

dry

Daylight No 8.6 4

2-lane, 2-way 

undivided

Curve Not adverse, 

dry

Daylight No 5.8 5

2-lane, 2-way 

undivided

Straight Not adverse, 

dry

Not 

daylight

No 5.2 6

2-lane, 2-way 

undivided

Curve Not adverse, 

dry

Not 

daylight

No 4.1 7

2 or more lanes, 

undivided

Straight Not adverse, 

dry

Not 

daylight

No 3.1 8

2 or more lanes, 

divided

Straight Adverse, not 

dry

Daylight No 2.5 9

2 or more lanes, 

divided

Curve Not adverse, 

dry

Daylight No 2.4 10

2-lane, 2-way 

undivided

Straight Not adverse, 

dry

Daylight Yes 1.9 11

2 or more lanes, 

divided

Straight Adverse, not 

dry

Not 

daylight

No 1.9 12

2 or more lanes, 

divided

Straight Not adverse, 

dry

Not 

daylight

Yes 1.8 13

2-lane, 2-way 

undivided

Curve Adverse, not 

dry

Daylight No 1.8 14

2 or more lanes, 

divided

Straight Not adverse, 

dry

Daylight Yes 1.7 15

2 or more lanes, 

divided

Curve Not adverse, 

dry

Not 

daylight

No 1.6 16

2-lane, 2-way 

undivided

Straight Adverse, not 

dry

Daylight No 1.4 17

2 or more lanes, 

divided

Straight Not adverse, 

not dry

Daylight No 1.2 18

2 or more lanes, 

undivided

Straight Adverse, Not 

dry

Daylight No 1.2 19

2-lane, 2-way 

undivided

Straight Not adverse, 

dry

Not 

daylight

Yes 1.2 20

2-lane, 2-way 

undivided

Straight Adverse, not 

dry

Not 

daylight

No 1 21

2-lane, 2-way 

undivided

Curve Adverse, not 

dry

Not 

daylight

No 1 22

2 or more lanes, 

undivided

Curve Not adverse, 

dry

Daylight No 1 23

2-lane, 2-way 

undivided

Straight Not adverse, 

not dry

Daylight No 0.8 24

2-lane, 2-way 

undivided

Curve Not adverse, 

not dry

Daylight No 0.7 25

 

 

Using In-depth Crash Data 

The NASS CDS file was also used in the high level 
characterisation of the DS to identify relevant crash 
types. CDS is a data system complementary to the 
GES file. The CDS investigations go beyond the 
PARs to include on-site investigation and 
documentation of the scene, as well as 
measurements of all crash damage on the vehicles, 
extensive documentation of crash injuries using 
hospital and other records, and estimates of the 
change in velocity (delta v) for each vehicle in the 

crash, where possible. Case materials for individual 
CDS crashes are available on the internet [5].  

Since CDS uses the same set of variables and 
definitions as GES, the CDS cases can be used as a 
sample of the types of events that would be 
selected in GES. CDS cases that met the selection 
algorithms developed for GES were reviewed to 
see if these crashes had the characteristics relevant 
for the technologies. Because the original case 
materials for the GES cases are not available for 
review, the ability to review more in-depth cases in 
CDS also provided valuable insight into how 
crashes are classified. The review confirmed that 
the algorithms developed for GES identified the 
appropriate crashes. 

Using Highway Performance Monitoring Data 

Detailed roadway geometric data are needed to 
make a correct sub-model regarding the 
characteristics of the roadway where lane/road 
departure crashes occur, such as lane widths, lane 
markings, radius of curvature, shoulder width, and 
shoulder type. This information is not available in 
the GES data, which only distinguishes curved 
from straight roads, the number of travel lanes, and 
a few other details. The more detailed information 
is however available in roadway inventory files, 
such as the Highway Performance Monitoring 
System (HPMS) data on the road system. Highway 
Performance Monitoring System (HPMS) Data 
represents the national highway system and 
includes data on the extent, condition, performance, 
use and operating characteristics of the Nation’s 
highways [6].   

However, because GES crashes are not geolocated 
(i.e., located using a standard geographic reference 
system such as longitude and latitude), it is not 
possible to link the GES crashes directly to a 
roadway inventory file. Accordingly, it is necessary 
to obtain descriptions of the roadway geometry for 
the target crash types from some other source. The 
Michigan Crash files was able to provide a link to 
such data, because all crashes in Michigan are 
geolocated (located by latitude and longitude) and 
those locations can be linked to roadway inventory 
data, specifically Highway Performance 
Monitoring System (HPMS) Data.  

The Michigan crash data captures information on 
crashes entered by police officers on the Michigan 
crash report, and includes data on all reportable 
crashes involving a motor vehicle. Reportable 
crashes involve a motor vehicle in transport on a 
roadway resulting in a fatality, injury, or property 
damage of $1,000 or more. This standard is 
reasonably comparable with reporting standards in 
most other states and thus with crashes in the GES 
file. Many of the variables in the Michigan crash 
file that describe the crash environment, such as 
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weather, road condition, number of lanes, speed 
limit, and travel speed, are compatible with similar 
variables in GES, even though it was necessary to 
develop comparable selection criteria for other 
variables. 

The Michigan crash file was analyzed to identify a 
set of crashes which matched as close as possible to 
the target crash types identified in the GES file. In 
addition, selected standard characteristics of the 
Michigan road system were compared with national 
distributions. The purpose of these comparisons 
was to demonstrate that the Michigan roadway 
system is reasonably comparable with the national 
road system. A method was then developed to 
match the crash scenarios on the sampled segments 
in Michigan to national estimates from GES. This 
made it possible to identify detailed crash scenarios 
relevant to the DAC/LDW/ELA technologies in the 
Michigan data which are comparable to those in the 
GES crash data. Since all police-reported crashes in 
Michigan are geolocated, the identified crashes and 
their crash sites could be linked to the HPMS 
roadway files and the detailed roadway information 
they contain, thus providing a very detailed 
geometric description of the roadway at those crash 
locations. This description could then be used to 
calibrate and validate the roadway sub-model in the 
simulation.  

THE SECOND LEG OF THE TRIPOD - 
DEFINING SUB-MODELS USING 
NATURALISTIC DATA  

It is clear that all the parameters needed for a 
reasonably comprehensive representation of the DS 
needed for the SIM simulation are not available 
directly from GES crash data.  For example, 
information about vehicle kinematics such as 
specific speeds, yaw rates, lane positions, etc, just 
prior to a road departure is not captured in crash 
databases.  However, this information is needed in 
order to develop proper sub-models which can 
simulate the potential benefits of the driver 
assistance technologies as envisioned in the Safety 
Impact Methodology (SIM).  Hence these must be 
derived from other sources, specifically from 
naturalistic driving data.  

Naturalistic data from UMTRI’s RDCW (Road 
Departure Crash Warning) Field Operational Test 
(FOT) was found to be sufficiently comprehensive 
in terms of the data for the purposes of populating 
the relevant elements of the scenarios. The RDCW 
FOT collected data from 78 drivers distributed 
evenly by gender and within three age groups.  The 
total distance traveled was 83,000 miles, covering 
almost 2,500 hours and over 11,000 separate trips 
spanning a 10-month window that included 
summer, fall, and winter weather. The drivers used 
11 specially instrumented passenger sedans 
equipped with the RDCW safety technologies 

being evaluated and UMTRI’s data acquisition 
system. The RDCW safety technologies targeted 
crashes involving vehicles that drift off the road 
edge or into occupied adjacent lanes, as well as 
those involving vehicles traveling too quickly into 
turns for the driver to maintain control. A detailed 
report on the FOT results, including technology 
effectiveness, driver responses, and other findings 
was submitted to the US DOT at the conclusion of 
the FOT [7].   

It is clear that the distributions for parameters such 
as vehicle speeds and lane positions need only 
encompass the universe of the relevant crashes of 
interest (i.e., those crashes relevant to the driver 
assistance technology that is being simulated), and 
not the entire universe of driving behaviour.  
Therefore, the data mining from naturalistic 
databases was done using the high level DS 
characterisation obtained from crash data as the 
input variables (see Table 1 above).  

A key element of data mining from naturalistic data 
is to ensure that the parameter distributions exclude 
driving for which the dominant crash type is non- 
technology-relevant. For example, in high traffic 
situations, the probability of a rear-end crash 
occurring because of multi-vehicle interactions 
(two or more) is higher than crashes due to single 
vehicle road departures, so high traffic situations 
should be excluded from the mining process.  

The RDCW database includes a traffic density 
parameter that can be used to filter out high traffic 
situations.  Additional resolution of traffic densities 
can be determined by looking at various other 
vehicle parameters such as the combination of 
repetitive braking and acceleration, inappropriate 
following distances and vehicle speeds not 
commensurate with roadway types (e.g. too slow 
for freeway driving).   

Figure 3 shows the distributions of some of the key 
parameters for Crash Scenario 1 as identified from 
GES in Table 1 above. This scenario consists 
mainly of driving on limited access roads that are 
two or more lanes with divided medians (e.g. 
freeways & interstates), no adverse weather 
conditions, straight and dry roads, with the crashes 
occurring during daylight hours when the driver 
was not fatigued. 
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Figure 3.  Distributions of vehicle parameters 
for Crash Scenario 1 in Table 1 above. 

 

THE THIRD LEG OF THE TRIPOD - 
DEFINING THE SUB-MODELS USING 
OBJECTIVE TESTING 

While GES crash data and naturalistic driving data 
are very valuable data sources, some characteristics 
of the sub-models can only be obtained through 
appropriate objective testing.  

This in particular concerns the functional or 
dynamic aspects of the driver assistance 
technologies and the driver, and is driven by sub-
model implementation issues. For the driver 
assistance technologies, there are two main ways of 
implementing them in the simulation. One can 
either use the actual technology software, or create 
a sub-model which replicates the technology’s 
behaviour without being identical to the technology 
itself. Regardless of choice in this regard, because 
the virtual world in which the technology will run 
will not represent the full complexity of the real 
world, the performance of the technology in that 
virtual world needs to be calibrated against real 
world technology performance.  

If this is not done, there is a risk that the 
technologies will over-perform during evaluation, 
since they would operate under the somewhat 
idealised conditions which exist in the 
computational simulation, and the driver model 
would not capture the behaviour of real drivers. For 
example, if the lane markings which a LDW 
technology depends on for lane tracking always are 
perfectly visible in the virtual world, the LDW sub-
model will always have perfect lane tracking in the 
simulation. However, lane markings in the real 

world sometimes are faded or missing entirely, and 
LDW availability is therefore less than 100 percent 
in the real world, depending on lane marking 
quality. The LDW sub-model used in the 
simulation must therefore be calibrated to match 
the performance of a LDW running on real roads.  

The same is true for the driver sub-model. In this 
case, the option of implementing the actual driver 
software is not available. Driver behaviour 
therefore has to be represented  by a sub-model 
which imitates relevant aspects of driver behaviour 
in the relevant DS, such as inputs to brake pedal 
and steering wheel, without therefore claiming to 
represent the actual structure of human emotional, 
cognitive and/or motor processing. Calibrating the 
driver sub-model’s performance in terms of action 
and reactions to the performance of real drivers is 
therefore very important for the validity of 
evaluation results.  

Of course, the same principle applies also to the 
vehicle sub-model. However, in relation to the 
driver assistance technologies evaluated in this 
ACAT project, the performance of the vehicle sub-
model is a smaller issue. Since none of the 
technologies are intended for scenarios associated 
with dynamic instability (i.e. the vehicle somehow 
starts to skid or lose traction), the influence of 
vehicle dynamics on technology performance will 
be limited. For example, the intervention provided 
by ELA (steering the vehicle back into the original 
lane if there is a risk of collision with a vehicle in 
an adjacent lane) involves only low lateral 
accelerations and speeds in order to avoid the risk 
of dynamic instability.  

Regardless of whether the testing is performed in a 
driving simulator, on a test track or on public roads, 
the objective tests can be said to come in two 
forms. One is in the form of detailed technical tests 
of the vehicle and its driver assistance technologies 
(technical testing). The other is objective tests 
designed to capture typical ranges of human 
performance where the driver is in the loop (HMI 
testing). The technical tests are used to calibrate 
and validate performance of the simulation relative 
to the driver assistance technologies, while the 
HMI tests are used in a similar way to calibrate the 
simulation for the driver performance. Note that in 
the HMI tests, there is a great deal of variability in 
performance, so the driver sub-model developed in 
the project attempts to capture a range of driving 
behaviors rather than just specific values in single 
recorded events.  

Physical tests were conducted on the track at Volvo 
in Sweden as well as on the field, and in Ford’s 
VIRtual Test Track EXperiment (VIRTTEX), a 
hydraulically powered, 6-degrees-of-freedom 
moving base driving simulator [8-11]. The main 
goal of that testing was to retrieve relevant data for 
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calibrating the technology and driver sub-models 
performance in the simulation to real world 
technology and driver performance. The main 
focus of the track and the field testing was to 
validate the physical performance envelope of 
LDW and ELA. Also, some track testing with naïve 
subjects took place at Volvo, as part of the 
evaluation of DAC. In the driving simulator, the 
emphasis was on human factors tests with naïve 
subjects (e.g. distracted and drowsy driver tests 
with LDW) though again some controlled technical 
tests were included. 

Technical Testing for the Technology Sub-
Models 

To calibrate the technology sub-models against real 
world performance, data from objective testing 
should cover true positive performance, false 
positive performance and availability. Testing the 
true positive performance of a driver assistance 
technology means establishing the extent to which 
it correctly detects and acts in the situation it was 
developed to address. For example, true positive 
performance for LDW can be measured as how 
often a LDW technology produces a lane departure 
warning when a lane departure in fact is occurring.  

Testing the false positive performance of a driver 
assistance technology means establishing the extent 
to which it “cries wolf”, i.e. the technology 
informs, warns or intervenes in situations which are 
not of the targeted type. Or put another way, false 
positives occur when the technology generates 
alerts that would not be seen as helpful by the 
driver. For example, false positive performance for 
LDW can be measured as how often LDW 
produces a lane departure warning even though no 
lane departure is about to occur.  

Testing for availability means establishing for the 
extent to which a technology is able to function as 
intended under various road conditions. 
Technology availability can be defined as the 
percentage of time during a test drive that the 
technology is active and operable relative to the 
total drive time. Availability needs to be evaluated 
on a variety of  roads under various  environmental 
conditions. For example, testing availability for 
LDW could be to drive one or more vehicles 
equipped with LDW in the field under a range of 
weather conditions on different road types, while 
recording for which portions of the drives the LDW 
has sufficiently robust lane tracking to be able to 
detect a lane departure.  

All these three areas must be covered, since they all 
affect the performance of the driver assistance 
technology, and thus the technology sub-model 
when integrated into the simulation. Availability 
can be used to determine for which DS one can 
expect the technology to be available. True positive 
performance indicates how the technology can be 

expected to perform within those DS it is available 
in. Finally, the number of false positives is a key 
indicator of the degree to which a driver may come 
to trust and rely on the technology, and therefore 
important for the tuning of how often, how fast and 
how much the driver sub-model should respond to 
an alert from the technology.  

HMI-Testing for the Driver Sub-Model 

In relation to development and validation of the 
driver sub model, data on several driver 
performance aspects is needed. These aspects can 
be split into two main categories: driver 
performance in the conflict driving phase, and 
driver performance in the non-conflict driving 
phase. These two categories have slightly different 
focus in the types of HMI testing needed to 
calibrate and validate the performance of the driver 
sub-model.  

     Driver Performance in the Non-Conflict 
Driving Phase - Driver Alert Control (DAC) is 
intended to elicit a response from the driver to take 
a rest break soon or let another driver take over, 
based on the technology-inferred “driver state” as 
determined by a broad set of sensor data. Basically, 
the DAC acts as a monitor for the driver in that it is 
analyzing vehicle state data and evaluating  how 
well the car is being “controlled” by the driver. A 
warning signal is issued to the driver based on 
predicted future vehicle states.  

The key point here is that the DAC provides a 
warning to the driver in the non-conflict driving 
phase. The effects of DAC are therefore best 
represented in the simulation by estimates of the 
probability of driver compliance with the 
recommendation to take a rest break. Driver 
compliance deals with the effect of a warning, 
which may result in a variety of driver actions.  At 
best, the driver will take some form of action to 
avoid a potential conflict driving phase in the 
future, for example, taking a break from driving or 
switch drivers if that is possible. At worst, a 
fatigued driver could ignore the DAC warning 
altogether.  Depending on the level of driver 
compliance, the alert may reduce the frequency of 
drowsy driving scenarios, thus reducing crash risk.   

While testing the true and false positive 
performance of the DAC technology still forms an 
integral part of the technical testing, the biggest 
challenge in objective testing for DAC is to find 
ways of establishing determinants for compliance 
and rates of compliance with DAC warnings. This 
challenge is not easily met. There are many factors 
which may influence compliance with DAC 
warnings, including the driver’s perceived urgency 
in reaching a certain destination, the physical 
possibilities of actually taking a rest break or 
switching driver (finding a suitable place to stop at 
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reasonably close), whether the driver thinks the 
assessment made by DAC is correct, etc.  

A full evaluation of all these factors were 
determined to be outside the scope of the current 
project both in terms of time and resources. 
However, some limited testing was carried out to 
determine drivers’ responses to DAC warnings. A 
test track HMI clinic with drowsy drivers was 
performed. In this clinic all but one of the drivers 
received a DAC warning during the drive. When 
asked to give feedback on how they perceived this 
warning (questionnaire study) a large majority of 
the drivers felt the feedback from DAC was useful. 
They also reported that the DAC feedback 
influenced how they drove and that it made them 
more awake. Some of the drivers were surprised by 
the feedback from DAC. The drivers did not 
perceive the feedback as annoying or frightening. 

So far, the testing results therefore seem to indicate 
that drivers who receive a DAC warning will be 
motivated to stop and do something about their 
drowsiness. If this is the case, then drivers will take 
action before the driving situation enters a conflict 
phase. This means that the DAC technology 
basically can be treated as a filter in the SIM-tool; 
by having the technology in the vehicle the number 
of drivers experiencing an unintended lane 
departure due to drowsiness will be reduced to a 
substantial degree.  

     Driver performance in the conflict driving 
phase - In relation to basic driver performance in a 
conflict driving phase, the driver sub-model needs 
to capture and be calibrated for two main aspects of 
driver behaviour. One is typical driver reaction 
times for the type of conflict evaluated. For this 
project, this means that objective testing must be 
carried out to determine how long it takes before a 
driver begins a steering correction when  
discovering or being warned of a lane departure. 
The other main aspect is the intensity and speed of 
the driver response, i.e. how fast a driver steers 
back into the lane when correcting for an 
unintended lane departure. This also has to be 
determined through objective testing in order to 
provide driver sub-model development and 
validation data.  

For evaluation purposes, the driver sub-model also 
must be able to represent a range of driver 
behaviours rather than a single average behaviour. 
For example, in this project it was found that crash 
data commonly cites driver fatigue as a 
contributing factor underlying unintended lane 
departures. For a correct evaluation, the influence 
of that factor should be possible to represent in the 
driver sub-model along with the typical behaviour 
of alert, non-drowsy drivers. Put slightly 
differently, it must be possible to tune one or more 
parameters which influence the driver sub-model’s 

control over the vehicle in a manner which can be 
made consistent with both the driving performance 
displayed by drowsy drivers, as well as alert and 
non-drowsy drivers.  

To exemplify, in this project, one way in which the 
influence of fatigue was captured in the driver sub-
model was by including variable time delays in 
lane-keeping control process. For example, to 
represent visual distraction (the driver closing his 
eyes in a micro sleep), one can introduce a delay in 
the driver sub-model’s processing of visual 
information. More specifically, if the driver sub-
model in a non-distracted state responds to new 
information on lane boundaries as soon as it is 
given, then in a drowsy state, a time delay is 
introduced before new information on lane 
boundaries is processed, even though the main 
simulation process keeps on running.  This means 
that the driver sub-model in its drowsy state will 
begin a steering correction calculation later than it 
would in its non-drowsy state.  

To calibrate and validate the time delay settings in 
the driver sub-model, as well as the corresponding 
behaviour of alert drivers, testing of drivers' 
responses to imminent lane departure events with 
and without driver assistance technologies 
activated were needed. A number of driving 
simulator studies were carried out, focusing on both 
alert and drowsy driver's reactions to, and 
acceptance of, different HMI solutions in lane 
departure situations. Participants drove under a 
variety of simulated conditions including night and 
daytime driving on interstate roads, narrower city 
roads and country roads.  In order to increase the 
number of situations that activated LDW, artificial 
"yaw deviations" were introduced, sometimes in 
combination with secondary tasks that increased 
the likelihood of driver distraction [12].  

From the log files of these studies, data could be 
extracted to determine a typical range of alert and 
drowsy driver reaction times and response types 
(e.g., steering/braking input to the vehicle, 
maximum lateral exceedence, etc) to a lane 
departure event. Since the log files from VIRTTEX 
include both the no warning condition as well as 
drivers getting a warning, typical responses could 
be established both for drivers with and without the 
technology available. 

A further aspect of driver sub-model calibration 
and validation for this project concerns driver 
response to an ELA intervention. The basic 
question is whether drivers will interfere with the 
intervention in a way which counteracts what the 
technology is designed to do. Interference may be 
more or less deliberate, for example, if drivers 
perceive the steering input from ELA to be some 
sort of vehicle malfunction rather than a driver 
assistance intervention, drivers may fight the 
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steering torque applied by ELA. If this is the case, 
then ELA will not be able to successfully intervene 
in all situations it could handle if drivers did not 
interfere. 

Some limited testing for this type of driver 
interference was carried out on a test track. The 
results indicate that drivers’ acceptance of the ELA 
intervention is good. There was a high approval 
rate among test drivers for the intervention 
provided, and no indications of driver interference 
with the intervention. More testing needs to be 
carried out to gain a fuller understanding of driver 
responses to this type of intervention, but for this 
project, it was decided to assume that driver 
interference is of limited import for the evaluation 
of ELA. 

DISCUSSION 

It has not been an explicit goal of this project to 
provide a universal analysis tool for estimating 
safety benefits for all vehicle safety technologies, 
or even all active safety technologies. The goals of 
the study are already ambitious, so the VFU-team’s 
approach has been to focus on specific technologies 
and to develop an approach that seems appropriate 
for those. For a different technology a slightly 
different approach might be preferred. The current 
technologies operate in the non-conflict phase or 
early in the conflict phase and involve a relatively 
high degree of technology interaction with the 
driver. If for another technology (e.g. frontal crash 
mitigation by automatic braking) there is little 
interaction (technology performance is largely 
unaffected by driver actions) then fewer DS may 
need to be explored. 

The research goals have also not explicitly included 
effects of vehicle type, driver age and skill. For the 
vehicle a single target vehicle type (mid-sized 
sedan class) was adopted and assumed to be 
“representative” in some sense. Also, though driver 
behaviour has been derived from a range of test 
subjects (including a wide age range and both male 
and female drivers) the population has not been 
resolved further in this study. 

The computational simulation approach as 
described above is quite complex, and certainly 
contains more elements than simply “test and 
evaluate”. This is because the crash environment – 
incorporating interaction between driver, vehicle, 
driver assistance technology and environment – is 
itself complex. The best approach to such complex 
problems seem to be by pooling and integrating 
available data sources rather than fixing on a single 
data source.  

While extensive effort may have to go into sub-
model validation the first time a computational 
simulation approach is developed, it has the 
advantage of being highly reusable; if a new 

technology addressing a particular crash type needs 
evaluation, only a few sub-models, or parameters 
of the sub-models, need to be updated, the rest can 
be largely reused.  

Apart from reusability, this modularity will also 
allow for a great deal of future enhancement and 
refinement, as research in any of the sub-model 
areas can be applied to that sub-model without 
having to change the overall structure of the SIM. 
Future research and findings can thus easily be 
integrated into the basic version of the SIM.  

CONCLUSIONS 

When developing a computational simulation 
approach, the relevant properties of each simulated 
component need validation, and the major 
challenge is not so much achieving representativity 
as validity. The experiences from the current 
project show that in order to achieve a high level of 
detail and accuracy in the development and 
validation for all simulated components, data from 
multiple sources must be used. These sources 
include crash databases, naturalistic driving data 
from field operational tests, objective testing on 
test-tracks and driving simulator experiments.  

The research also shows that sufficient data can be 
obtained to validate the properties of the simulation 
components. There are limitations in available data 
for some sources which may raise questions of 
representativity, such as for some of the objective 
testing of driver compliance with alerts and 
warnings issued by the driver assistance 
technologies. In principle though, these can be 
overcome by extended data collection.  

Though multiple data sources related to traffic 
safety are available, few approaches make 
systematic and integrated use of them. Using them 
to validate simulation components provides a way 
of integrating data from various sources into a 
reusable format.  

While extensive effort may have to go into sub-
model validation the first time a simulation is 
developed, subsequent projects will require much 
less validation effort since the simulation 
components can be reused. 
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