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In a report to the 1984 IRCOBI conference, the author and two colleagues 
demonstrated the application of the Maximum Likelihood method to biomechanical 
research data . The method was used to interpret field acc ident data or 
laboratory research data into a cumulative risk function for injuries . By using 
that method the problem with so called censored data so common in 
biomechanical research - was eas ily overcome . The present report is a follow-up 
of the 1984 report, giving answers to received comments, and also including 
recent developments in connection with the method. A procedure to complement 
the risk function with a confidence band has been developed . It i s  shown that 
the method can comprise both censored as well a s  non-censored data in the same 
analysis . A heuristic goodness of fit measure is sugge sted . In conclusion, the 
described method seems to be an efficient tool for biomechanical research work . 

l.BACKGROUND 

Much work in biomechanics deal with the establishment of injury threshold 
function s .  They are important since they can be interpreted as risk functions 
for larger populations, provided reliable inferences f rom s ampled data are 
feas ible . But violence is difficult to control, so inj ury data from acc idents 
and laboratory experiments do seldom represent threshold i n j uries . In most 
cases the violence has been either too high or too low to inflict exactly a 
threshold i n j u ry . Therefore the translation of va rious i n j ury data into 
threshold functions has been a problem . 

This problem was brought into focus in Volvo's safety work in 1983, when the 
ISO-TC22-SC12-WG6 working group had to analyse certain biomechanical laboratory 
data (11,12) . The Volvo Car expert in that group, Mr . Hugo Mellander, initiated 
a study with the following results : 

1 )  After a statistical analysis Mr . Arne Ran, at Volvo Data AB, showed that the 
problem could be solved with the Maximum Likelihood method, which is a 
known procedure in several scientific and technical areas [ 9) .  

2 )  Computer programming by Mr.  Ran provided suitable algorithms for evaluation 
of such data . These were made ava ilable to Volvo's safety specialists . 

3 )  A report on the study was presented to the 1984 IRCOBI conference [13) . 

The algorithms used at Volvo have since 1984 received some additions . The 1984 
IRCOBI report has also been commented upon by other researchers . This report on 
these developments is appropriate for the 1988 IRCOBI conference with its 
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ernphasis on statistical rnethods . A review of the essentials frorn the 198 4 
report will be given before the account of the recent developrnents .  

2.INTRQDUCTORY TEBMINQLOGY 
The terrninology in biornechanics is sornetirnes carefully discrirninating in order 
to rnake clear whether an account refers to, for instance, test anirnals, crash 
test dwranies, or human accident victirns [ 1 ] . For the purpose of this paper 
presenting cornrnon statistical tools which can be applied to several areas of 
b i ornechanics, the words l i s t e d  below will be u s ed with the noted 
generalisat ions . They will be used as far a s  poss ible in the text, but 
deviations frorn this intention rnay occasionally be rnade in the interest of 
clarity . 

Subject is used to signify an injury victirn, a laboratory test anirnal, a sarnple 
of biological tissue, a human or a human substitute . 

Damage is a terrn for injury, harrn, irnpairrnent, fracture, rupture, death, that
occurs to the subject . Damages are assessed after careful rnedical exarninations,
and they are usually grouped into a srnall nurnber of classes like in the AIS 
scale, or often in a simple bi-level grouping : significant or not-significant
damage. 

Loading is a terrn for violence, dose, exposure, irnpact speed, deceleration
rnagnitude, and other measurable physical influences that are supposed to have a 
strong correlation with, or even having caused, the darnage to the subject . 

Threshold i s  a terrn signifying that a loading has been j us t  high enough to
inflict a darnage that will be a s s igned a certain s ignificant darnage 
classification . I . e .  the structural tolerance of the tissues of the subject has 
been exceeded . If the loading has been slightly lower, the darnage is lesser 
than the critical threshold and consequently a s signed into a lower darnage 
class . Hence, threshold loading and threshold damage . 

2.1 Censoring - an important concept 
In accident and laboratory data, the relation between loading and darnage is not 
necessarily a straightforward cause and effect relation . A certain kind of bias 
is often present . 

Recorded loadings have in rnany cases been rnore than suf f icient to cause the 
clas s i f ied and reco rded darnages . Thus, the recorded loading figures a re 
probably too high - and never too low - to serve as a measure for the threshold 
darnage levels . This tendency, that a recorded data point systernat ica'ily 
overestirnates anothe r interest ing variable, is by s t a t i st icians called 
censoring. The terrn is strictly technical and no irnproper t arnpering with data
is irnplied . Irnplicit in the censoring concept is also the fact that you don ' t  
have any idea about the rnagnitude o f  the overestimation . On the other hand, if 
a loading has been too low to cause a threshold darnage, then the loading nurnber 
is a poor and too low estirnate for the thre shold loading . This is also called 
censoring, but the biasing uncertainty now has a reversed sign . Therefore 
censored data are data that are biased, the s ign of the bias being known but 
not the rnagnitude . 
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3.DETEBMINATION OF THE DISTRIBUTION F'QNCTION 

One of the tasks in biomechanical research is to describe the threshold loading 
distribution for a certain population of subjects . The determination of this 
function, for a set of spec imens ,  relies on a corresponding set of censored 
loading data . The method that we use to handle such data derives from Fisher ' s  
work with the Maximum Likelihood method in the 1920 ' s  [ 4 ] . 

The threshold loading for a certain type of damage in a certain population of 
subjects must be regarded as a random variable, the f requency density of which 
can be wr i t ten as the funct ion f ( z )  , where z is the loading measure . The 
integral of f ( z )  is the cumulative frequency distribution F ( z ) . It is our goal 
to determine the yet unknown function F ( z )  and its derivative f ( z ) . See figure 
1 .  

The function F ( z )  can be interpreted a s  the risk, or probability, that a 
loading o f  the magnitude z would cause a s ignificant damage . Then, 
complementary, the probability for a non-significant damage at the loading 
level z must be 1-F ( z ) . If, therefore, for a sample of certain subjects, there 
is a record of loading data together with associated damage classifications, 
the following addition can be made to each record : each observed significant 
damage has bad an occurrence probability F ( z ) , and each non-significant damage 
has bad an occurrence probability 1-F ( z ) . 

Fisher introduced the · " Likelihood" concept . It means that if you have a set of 
observations ( numbered by q) which each had the probability Pq to occur, then 
the likelihood L, or joint probability, for this particular set of observations 
to occur is equal to the product of all Pq, i . e . :  

L ... II Pq ( 1) 

Inserting our previous notations we get : 

L [ for the set of Observations] • II P [each individual observation] • 

• II P [ all significant damages ]  x II P [ all non-significant damages] m 

- II { F ( z i > }  x II {1-F ( z j ) } (2) 

Here the numbering variable i applies to significant damages, and j applies to 
non-significant damages . 

If F ( z )  were to signify a number of different distributions, we would find that 
some of these gave a higher value to L than others . Therefore it is reasonable 
to imagine a smart manipulation of F,  in order to yield a maximum for L, and 
then declare the most success fully manipulated F as the function which best 
models the recorded data ! The candidate F distributions should be selected 
among the lot of s igmoid, or S-shaped, functions that are available . Common for 
these distributions are that they shall have a value close to 0% for low values 
of z ,  and a value close to 100% for high z values . They shall of course also be 
continuous and have a derivative dF/dz > 0 .  Let one class of such distributions 
be designated by F ( z )  a F ( z ; K ) , where K is a set, or a vector, of parameters 
that can be given certain values to trim the shape of the distribution F .  Then 
the likelihood expression is : 

L ( all Zq; K) - II { F ( z i ; K) } x II {l-F ( Z j ; K ) } ( 3 )  
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Here we can see that L i s  a function of the known loadings zq, and the yet 
undetermined parameter set K .  The first product in the right member comprises 
the probab i l ities for the s ignif icant damages ,  the other product comprises 
those for the non-significant damage s . To facilitate nume rical work the 
logarithm is taken for both members : 

ln [ L (all Zq;K) ] ( 4 )  

An obvious way t o  proceed now i s  t o  study the partial derivatives o f  L .  Putting 
them equal to zero yields an equat ions system ( formally 0 = aL/aK) : 

0 ( 5 )  

These equations (they are a s  many a s  there are element s in the set K )  contain 
all the observed loadings , and the unknown parameter set K .  Sol ving the 
equations for K yields as roots a set of constants denoted K. Therefore the 
cumulative function F ( z ; .K') is the variant of the F function that has the 
highest likelihood, or gives the most credible f it ,  for the reco rded loadings 
and damages . The "log-likelihood-number" In [ L  ( a l l  zq; K) ] shall be recorded and 
used for further goodness of fit studies . 

Note that in this method the censored loadings are accepted as the biased data 
they are, and no pretension is made to let them act as individual est imates of 
the threshold damages . Their j oint result ,  the function F ( z ; K) ,  can , however, 
be used as the best est imate of the integral of the threshold damage function 
f ( z ; K) for the set of damaged subjects .  

4.MIXING CENSOßED AND NON-CENSOßED VALUES 
The above i s ,  essent ially, what was presented about the Maximum Likelihood 
principle in Volvo ' s  1984 IRCOBI pape r .  A recent addition is as follows . 

Thanks to great care in planning, experimental set up and execution, and to 
careful damage inspection and analys i s ,  it might sometimes be pos::i ible to 
determine that for ::iome individual ::iubject::i the damages a re " t rue" thre::ihold 
damages ,  i . e .  they need not be rega rded a::i cen::iored data . In many experimental 
s ituations ::iuch non-cen::i ored values are even the rule rather than the 
except ion . 

The analysis o f  such data is t raditionally simple and we ll known - the 
calculation of a mean and possibly a standard deviation . In some cases when you 
are interested in determining the distribution of these threshold data, the 
Maximum Likelihood is as useful as any other asse::isment method . The statist ical 
reasoning above is applicable with sma l l  adjustment s .  The probability for an 
experiment to yield a threshold damage at the loading z is : 

P [ threshold damage, given z ]  = f ( z )  ( 6 )  

Collectively the likelihood for a series o f  threshold recording::i ( numbered by 
k )  is : 

L [ all Zk ] = II P [ threshold damage at Zk ] 

L [ all Zk ; K ]  = II f ( zk ; K )
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ln ( L  (all Zk ; K) ] ( 9 )  

which should be analysed to determine the maximi zing parameter set 1C .  The 
result is the probability mechanism that best fits the observations : 

P [ threshold damage at z ]  - f ( z ;IC) ( 1 0 )  

Now it i s  obvious that we have the possibility t o  perform a n  analysis o f  a 
complete experimental series, containing censored as well as non-censored data, 
in one single maximization procedure . The total likelihood expression is : 

L ( all zq ; K) - II { F ( z i ; K ) } x II  { 1-F ( z j ; K) } x TI f ( zk ; K ) ( 1 1 )  

and the equations system t o  solve for K is : 

o ... a;aK 'L ln c F < zH K> l + a1aK °L ln c 1-F ( z j ; K) J + o/oK 'L ln c t < zk ; K) l ( 1 2 )  

Here the partial sums in the right member contain : the significant damages ,  the 
non significant damages , and the threshold damages ,  in that order . This is an 
optimal utilization of experimental dat a ,  which p robably is not much known. It 
is certainly worth more attention in planning and analysis of experiments in 
biomechanics as well as in other areas . 

5.SELECTION OF A SUITABLE Ft1NCTION 

In our first implementation of the Maximum Likelihood method the Weibull 
distribution was chosen for F ( z ; K) . The main reason was that this function, 
thanks to its three parameters has a l a rge flexibi lity . It can mode l 
synunetrical distributions a s  well a s  skewed ones in either direction . The 
function is written : 

W ( z ;  a,ß;y) 1 - exp [ - { ( z -y) / a 1 ß] ( 1 3 )  

The parameters ß and y can be restricted t o  � 1  and � O ,  respectively, in order 
to avoid solutions that would be physically unlike ly . These restrictions will 
eliminate models with decreasing vulnerability as the loading increa ses, and 
injury measures less than zero, respectively . A detailed discussion on these 
aspects of the Weibull parameters can be found in the 1 9 8 4  report ( 13 ] . In its 
present version of the algorithm there is included the possibility to handle 
mixed data sets containing censored as well as non-censored values . 

Our Maximum Likelihood algorithm for the Weibull distribution is based on the 
N . A . G .  software ( 1 0 ] . It has then been added as an extension to the statistical 
analysis programme package S . A . S .  ( 1 4 ] ,  which is available on Volvo Data ' s  
mainframe computers . Available as standard features in this package are Maximum 
Likelihood fitt ing programmes for the Probit [ 3 ]  (easily transformable to 
Normal and Lognorma l ) , and the Logistic distributions . 

Recently it has been suggested that Ext reme Value functions, that are used in 
fracture mechanics ( 8 ,  chapter 1 9 ] , might be a n  interest ing addition . These 
functions are derived from theories of the weakest link in a construction, and 
they are skewed with a long tail towards high values . It appears as if such 
skew is present in several biomechanical data sets . You should, however, 
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remembe r that accurate modelinq of distribution tails requires a !arge number 
of samples, which rarely is available in biomechanical laboratory studies . 

The computer proqrammes provide, as desired and feasible, confidence intervals 
to the fitted distributions . For the Weibull case the confidence algorithms are 
adapted from the work of Cheng and Iles ( 2 ] . Details about the alqorithms for 
confidence bands in the S . A . S .  programme are presently not analysed. However, 
when certain data sets are analysed with the Weibull and the Lognormal models 
the resultinq output distribution qraphs and their confidence bands appear 
quite similar by a visual inspection . 

6.THE CßEDIBILITY OF THE SOLUTION 

The overall credibility of a derived statistical model is dependent not only on 
the Maximum Likelihood method, but also on a number of other circumstances ,  as 
listed below. For effic ient handling of these problems , items 1 to 3 require an 
experimenter who knows the physics of the studied subjects and measurement 
procedures, and items 2 to 4 require a person with statistical training . Close 
cooperation between these two persons is important and rewarding . 

1 )  The relevance of the measured variables must be assured . Experimental 
errors must be controlled . The traditional classification o f  errors in 
random, systematic and gross errors might be helpful during the assessment 
procedure . 

2 )  Shortcomings in selection and representativeness o f  the studied subjects 
must also be controlled if you want to use s ampled data for inferences 
about other subjects in !arger populations . 

3) The selection of a suitable model function for F ,  i . e .  Normal, or Weibull,
or something else, has no unique "best" solution . The magnitude of l n ( L )  -
the log-likelihood-number - serves as an indication here; the best fitting
function has the highest likel ihood value . The choice of the "best" model 
is a task that requires experience with experimental data both from 
physical and mathematical points of view.

The physicist knows the typical damage mechanisms and is familiar with 
models that are used for their characterization . This might sometimes lead 
to certain favoured distributions and pa rameter range s . For instance, 
assuming the vulnerability of the specimens to increase by z, requires that 
the so called "Hazard" function : 

H ( z )  • (dF ( z )  /dz ] / ( 1-F ( z ) ] ( 1 4 )  

has a monotonic increase a s  z increases . This relation has not explicitely 
been much considered in biomechanical mode ling, but is a standard concept 
in reliability and length of life studies . 

The mathematician knows the adapt ability of different functions to various 
sets of scattered dat a .  He/she also knows the operat ing characteristics of 
the maximi zing computer programmes that are to be used. 

A discussion and cooperation between the two specialists will ensure a good 
selection of suitable functions . 
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4 )  The goodness of fit can be studied in a couple of ways . 

A heuristic goodness of fit indicator can be defined as the quantity: 

G e [ ln ( L) /nJ antilog [ ln ( L ) /n) ( 15 )  

where l n  ( L )  i s  the log - l ikelihood-nurnber ,  and n i s  the nurnber of 
observations . Recalling the definition of L in eq. ( 1 )  and ( 2 ) ,  G can be 
described as the geometrical average of all Pq values . In principle, this

quantity would lie between 0 . 5  for meaningless f it s ,  and 1 . 0  for perfect 
fit s .  See figure 2 .  

Many computer programme packages for model fitt ing automatically provide 
some kind of goodness of fit measure . 

Conf idence bands for the dist ribution found can be determined by 
t raditional methods . Fishe r '  s information matrix contains variances and 
covariances as partial derivatives dL/dK. From these the confidence band can 
be determined by algorithms such as those suggested by Cheng and Iles ( 2 ) . 

7.AFPLICATIONS AN!) COMM.ENTS 

Three application examples with accident and laboratory data were accounted in 
the 1984 report . Here will be described some additional findings and comments 
from ourselves and others . 

The Maximum Likelihood method has for several years been used at Volvo Car 
Corp . to analyse accident data and relate these figures to laboratory test data 
(6), similar to what was proposed in a comprehensive study by Harsch in 1987 
(5) . Studies of biomechanical data are also performed occasionally . Continuous

eva lua t i ons a re made of the user f riendl ine s s  of the software, and
modi fications are introduced as needed . 

The material in our 1984 IRCOBI report has been presented to various audiences 
on several occasions and has been well received. In one case it resulted in an 
(informal )  readable tutorial on this application ( 7) . 

A researcher told us that his students are "intrigued and fiddle much with your 
Weibull distribution" . A reflection to this is that the derived dist ribution 
primarily is a model summarising the experimental data . When beginning to use 
this method, one should be cautious , and learn from discussions with a 
competent statistician which interpretations that are permitted or discouraged 
when using models . 

A comment that we received to the 1984 report was that the analysis of research 
HIC data is a "mixture of apples and bananas " ,  since a skull that is fractured 
in an experimental situation has a somewhat lower H I C  value due to the 
increased time of deceleration during the deformation and fracture of the 
skull . Therefore HIC values for fractured and non fractured skulls do not 
measure the same property . The available mode l permits an easy study of this . 
The list of HIC data in Prasad ' s  and Mert z '  paper ( 12) is used for a simple 
analysis . Suppose, without much actual data support for it , that a HIC value 
for a fractured skull should be 40% higher than recorded, if it is to be 
compared to the HIC values for non-fractured skulls . All HIC values for the 
fractured specimens in the Prasad data set are increased by 40% and a new 

29 



distribution is fitted to the modified data set . The modification resulted in a 
better separation between the non-fractured and the fractured sets , which 
resulted in a more syrranetric distribution . See figure 3 .  

The confidence 
95% confidence 
so f ew s amples 
to determine . 

bands used in industrial applications are usually selected at a 
leve l .  Biomechanical experimental data do in many cases comprise 
that such a band becomes uncomfortably wide , or even imposs ible 
If 50% is chosen instead, the band becomes narrower and the 

picture appears more pleasant . See figure 4 .  However ,  one must recognize that 
the lower a statistical conf idence level i s ,  the more uncertain are any 
decisions based on such evaluations of dat a .  Either one has to consciously 
accept this uncertainty, or try to reduce it by promot ing basic biomechanical 
research for the increase of baseline data . 

7.1.An Evaluation with a Surprisinq R.esult 
One surprising outcome of a certain published study, by Prasad and Mertz ( 12), 
was the verdict that our "Three Parameter We ibull Maximum Likelihoood Method 
[ is ]  clearly unable to provide a good approximation o f  the actual threshold 
curve when data are highly scattered" ( italics added) . This conclusion deserves 
some comments, since it has been founded on a very special case . The comments 
are included here for those who might want to lock closer into the study . 

The published study was devoted to the available biomechanical base data for 
the HIC criterion . Included in the study were several ways to mode l the head 
injury data into a risk function . In addition to testing risk function mode ls 
directly to the H I C  dat a ,  a st udy was also made with some hypot hetical 
experimental data . A set of such data was selected from a Normal dist ribut ion, 
and an experimental strategy ( load exposure to each hypothet ical test specimen) 
was chosen so that a set of s imulated observations was produced where no 
particular distribution could be discerned. The underlying Normal dist ribution 
had become invisible due to the experimental arrangement . 

To these data the Weibull mode l ,  as used in the study, provided the correct 
interpretation that the risk for injury was 50% in the neighbourhood of the 
dat a .  Since no other information was int roduced to the Weibull mode l ,  the risk 
of 50% became extended infinitely to both ends along the z axis . This was not 
in agreement with the underlying supposed Normal dist ribution . Therefore the 
above declaration was made about the inability of the Weibull mode l .  The 
conditional clause " when data are highly scattered" is an important one and 
should be applied to any other distribution tested in the same manner .  

However, the Maximum Likelihood method seems not t o  have been used to its full 
potent ial in the study . Several reflections can be adde d .  

First, with this set o f  data the goodness o f  f i t  indicator G w i l l  b e  50%, which 
means that a meaningful fit is not possible to make . This shortcoming shall not 
be blamed at the Maximum Likelihood principle, but is the result of the scatter 
in data . It is one of the virtues of the Maximum Likelihood method to include 
such evaluation aids . 

Next , a knowledge about the physics in the hypothetical experiment might have 
indicated that the specimens had an increasing vulnerability, in which case the 
Weibull ß should have been restricted to values > l ;  cf . eq . ( 1 4 ) . If even a 
Normal distribution could have been assumed for the dat a ,  the Weibull ß should 
have been fixed at - 3 . 5 ;  or still better - the Maximum Likelihood fit should 
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have been performed with F ( z )  being a Normal distribut ion . These measures would 
have provided dist ributions with more appealing shapes .  But the G value would 
have remained at 5 0 % ,  because of the scatter of the assumed experimental dat a .  

Finally, an analysis o f  the hypothetical arrangement o f  the experiment reveals 
that the selected st rategy is a rare occurrence . A Monte Carlo simulation of 
permutations of the experimental procedure shows that scatter of this type 
occurs only in 0 . 6% of all possible cases . In other permutations the scatter is 
les s ,  the G value is higher than 5 0 % ,  and most Weibull fits approach the 
generating Normal dist ribut ioh . 

A visual indication of the discriminating power of the Maximum Likelihood 
Weibull fit can be found in the same study. Originally the data base contained 
43 experiments with 23 significant brain damages ( 53 % ) , but after a revision 5 
experiments were removed, and the remaining set contained 3 8  experiments with 
1 9  significant damages ( 5 0 % ) . This difference between the two sets can be 
clearly seen when the Weibull curves are plotted together ,  see figure 5 .  

8.CONCLUSIONS 
We have found that Fisher ' s  Maximum Likel ihood method is a suitable tool for 
the analysis of censored data in accidentiological and biomechanical 
investigations . Our first work with the model f rom 1 9 8 4  has been complemented 
by several improvements both in the model and in the user interface . It has 
evolved as a useful tool in Volvo 1 s  safety work, and - it appears - also with 
several other researche rs . The future will no doubt witness more improvements 
of this and similar powerful methods for traffic safety analyses . 

The author is indebted to Arne Ran, Erik Elgeskog and many other f riends and 
colleagues at Volvo for helpful discussions . 
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Figure 2 .  The relation between the log-likelihood-number and the goodness of 
fit indicator G, c . f .  equation ( 12 ) . 
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Figure 3 .  Comparison between two data sets . The original data are 5 4  samples 
from [ 12 ] . A two-parameter Weibull fit to the original data is drawn a s  -- . 
The data have been modified by multiplying the fracture HIC ' s  by 1 . 4 .  A 
two-pa rameter Weibull fit for the modified set is drawn as - - - - .  The 
modif ication resulted in a better Separation between the non-f racture and 
fracture data sets, which gave the modified risk curve a better symmetry . 
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Figure 4 .  Confidence band3 

(two-sided) at 50 \ and 90 \ 
levels. The cent ral risk curve shows 

a two-parameter Weibull fit to the 

5 4  samples of HIC fracture data in 

(11) . 
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Figure 5. Combined distribution 

curves from figures 4 and 5 in (12) . 
The omission of four brain damages 

at 540, 1150, 1200 and 1500 HIC, and 

of one no-damage at 1185 HIC, lowers 

the curve from the solid to the open 

dashed line. Number of samples is 43 
and 38, respectively. 
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